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Abstract: In order to incorporate the decision maker’s
preference into multiobjective optimization, a preference-based
multiobjective artificial bee colony algorithm (PMABCA) is
proposed. In the proposed algorithm, a novel reference point
based preference expression method is addressed. The fitness
assignment function is defined based on the nondominated rank
and the newly defined preference distance. An archive set is
introduced for saving the nondominated solutions,
improved crowding-distance operator is addressed to remove
the extra solutions in the archive. The experimental results of
two benchmark test functions show that a preferred set of
solutions and some other non-preference solutions are achieved
simultaneously. The simulation results of the proportional-
integral-derivative ( PID ) parameter optimization for
superheated steam temperature verify that the PMABCA is
efficient in aiding to making a reasonable decision.
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and an

uperheated steam temperature plays an important role
S in the security and economy of power plants. It is
well known that time delay makes it difficult to control.
In order to solve the large time delay problem, a cascade
control system is usually employed to control the super-
heated steam temperature'' ™’
loop controller is to quickly respond to spray water flow
disturbances, and it is usually designed as a proportional
controller. The primary control object is characterized by
hysteresis and nonlinearity, and a proportional-integral-
derivative (PID) controller is usually employed'”. Clear-

. The objective of the inner

ly, it is quite difficult to tune the PID gains because of
the time delay and nonlinearities.

The common performance indices used by the PID con-
trollers are the rising time 7, the settling time 7, the
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maximum overshoot ¢, the attenuation rate ¢, and differ-
ent error criteria™, such as the integral of absolute value
of error (IAE), integral of squared error(ISE), integral
time multiplied by the absolute value of error (ITAE),
integral time multiplied by the squared error (ITSE),
etc. In recent literature, many experimental results have
proved that there are conflicts among these objectives™ ™.

Researchers used different algorithms to search for the
design parameters of the PID controller™™. However,
few of them incorporate the decision maker (DM)’s pref-
erence into the optimization. Since most multiobjective
optimization algorithms supply the DM with a large num-
ber of solutions, it appears that it is a difficult task to
choose the final preferred alternative. In practice, the DM
often has at least a vague idea about what type of solu-
tions is preferred. Thus, instead of the boring entire fron-
tier, the emphasis may be put on finding a preferred and
smaller set of optimal solutions.

Recently, the artificial bee colony (ABC) algorithm has
been applied in many research studies due to its local and
global search capability. The ABC algorithm which was
developed by Karaboga, is based on the foraging behavior
of honey bees'”. In the ABC algorithm, every bee is re-
garded as an agent, and the swarm intelligence is em-
ployed in labor division, cooperation, and role conver-
sion. The research results of Ref. [8] show that the ABC
algorithm performs better than the genetic algorithm and
the particle swarm algorithm in most cases. Taking both
the DM’s preference and the efficiency of the ABC algo-
rithm into consideration, a preference-based multiobjective
artificial bee colony algorithm (PMABCA) is proposed in
this paper.

1 Multiobjective Optimization

Generally, a multiobjective optimization problem can
be described as

min f(X) = (f,(X),£(X), .... £, (X)) (1

s.t. g,(X) =0 p=1,2,...,1

hq(X) =0 g=1,2,....n

where X e () is the decision vector; g,(X) =0 and £ (X)
=0 are the constraints; (2 is the feasible region.
Nowadays, the most popular optimal concept used in
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multiobjective optimization is Pareto optimality. Its for-
mal definitions can be described as follows':

Definition1 VX, X, e, if Yke (1,2, ..., m},
fi(X) <f(X)); together with It e {1,2, ..., m}, f(X))

<f,(X;), we say that X, dominates X;, marked as X, >
X,.

Definition 2 VX, X, e, if dJke (1,2, ..., m},
fi(X) <fi(X)); together with dte{l,2,...,m}, t#k,
fi(X)) >f,(X;), we say that X, has nothing to do with X
marked as X,OX;.

Definition 3 X, e (2 is said to be a Pareto optimal so-
lution if = 3X, (2, s.t. X,>X,. Denote X" as the Pa-

reto optimal solutions, Py = {X~

is said to be the Pareto optimal solutions, P, = {F(X) =
(X)), £,(X), .0 f,(X)) | X e {X"}} is said to be the
Pareto optimal front.

2 A Novel Preference Expression Method

In the past decades, various methods have been pro-
posed for expressing the DM’s preferences'’'*'. Among
them, the reference point method seems to be a natural
way to express preference.
point approach in practice, the DM is asked to supply a
reference point and a weight vector.
guides the search toward the desired region while the
weight vector provides more detailed information about
each objective.

Recently, the Euclidean distance measure-based refer-
ence point approach addressed by Deb has been widely

used in preference-based multiobjective optimization algo-
1131

When using the reference

The reference point

which is described as
X) —r,
Z ( Ig"IX ) mm ) ( 2)
-1

where r, is the i-th value of the chosen reference point; w;,
is the i-th component of a chosen weight vector used for

Zw Lo

and £ are the maximal and minimal value of the i-th ob-

rithms,

di(x,r) =

scalarizing the objectives, w, e [0, 1]

jective, respectively.

With the Euclidean distance measure, a number of so-
lutions in the region of interest will be found. However,
the difference between the objective of each candidate and
the relative objective of the reference point is not consid-
ered in Eq. (2). For example, suppose that the chosen
reference point is (10, 10) and the chosen weight vector
is (0.5,0.5); solution S, is equal to (6.1,4.8);
tion S, is equal to (7.5,4);
Euclidean distance from S, and S, to the reference point
are equal.
with Eq. (2). But if we examine each objective in detail,
we can see that there are differences between them.
it is necessary to consider

solu-
it is clear that the weighted

So it cannot be estimated which one is better

From the above discussion,

the distance from each objective to the relative objective
of the reference point.
the multiobjectives in an equation remains unresolved.

If we weight the difference of every objective in an
equation,
somewhat subjective. A simple method of taking the de-
gree of each objective into consideration is to calculate the
largest weighted distance difference among all the prefer-
ence objectives.

In this paper, a novel reference point-based preference
expression method is addressed, with which not only the
weighted largest distance of each objective to the relative
one of the reference point being calculated, but also the

Nevertheless, how to secularize

the weight vector is difficult to set and it is

weighted preference distance to the reference point simul-
taneously being taken into consideration. The new prefer-
ence distance is calculated as follows:

1) Calculate the weighted largest difference of all pref-
erence objectives

i (x, P) = max |, 20 20 O 21
M o
i, jel,2, ...,p; i#j; p<m (3)

where p equals the number of objectives that the DM can
express preference for, and w, is the weight coefficient.
The more attention to the objective paid, the larger the
coefficient value is.

2) Calculate the weighted preference distance of each
candidate

14 x

dxn = [Swr(B020) @
_fi

where d_(x, r) is similar to d;(x, r), and the only differ-

ence is that d_(x, r) merely calculates the distance of the

objectives for which the DM can express preference, p<

»
m, ZWj =1
j=

3) Calculate the preference distance of each candidate

d,(x.r) =M (X) (5)

In dw(i, r))

If the value of d,(x, r) is close to 0, it indicates that
distances of the selected objectives to the reference point
are similar to the corresponding dimension. In the pro-
posed preference expression method, both the differences
of each objective and the weighted preference distance to
the reference point are considered. The solution near the
reference point and the small deviations between the ob-
jectives are preferred.

Following the example above, suppose that f™ =
=20, f™ =f™ =2, using the new proposed preference
expression method, it is easy to obtain dif , (a, r) <
dif (b, r), and, thus, d (a,r) <d,(b,r). So S, is bet-

max
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ter than S, when the weight coefficients are set to be
(0.5,0.5).

However, if we put the emphasis on objective-1 and set
the weight coefficients as (0. 75, 0.25), we can obtain
d,(a,r) >d, (b, r). In addition, if we put the emphasis
on objective-2 and set the weight coefficients to be
(0.25,0.75), we can obtain dp(a, r) < dp(b, r). It is
clear that different answers will be obtained with different
weight coefficients.

3 Proposed PMABCA

Similar to the basic ABC algorithm, the PMABCA
consists of three groups of bees: employed bees, onlook-
er bees, and scouts. A possible solution for the optimiza-
tion problem is defined as a food source, and the fitness
value of the solution is defined as the nectar amount of
the associated food source.

In the PMABCA, the number of employed bees and
the number of onlooker bees are equal, and they are both
equal to the number of food sources. Initially, each em-
ployed bee produces a new food source from its surround-
ing food source site and exploits the better one. In this
study, in order to avoid the searching process from being
trapped in the local optima, the simulated binary cross-
over (SBX) operator and the polynomial mutation (PM)
operator'"*! are introduced into the exploitation. After ex-
ploitation of the employed bees, information is passed on-
to the onlooker bees, which select food sources according
to the quality of each solution. The onlooker bees exploit
the same as the employed bees. The third group of bees
are the scouts who are sent into the searching area ran-
domly to discover a new food source when one has been
abandoned.

In order to keep the nondominated solutions in the
searching process, an external archive is introduced into
the PMABCA. As both the preference and non-preference
solutions are kept in the same archive, an improved crow-
ding distance (CD) operator is addressed to determine the
best spread-out of solutions in the archive. Fig. 1 presents
the flowchart of the proposed algorithm.

3.1 Main operators of the PMABCA

3.1.1
There are three parameters to be initialized, i.e., the
number of food sources Ng, the number of cycles through

Parameters and food sources initialization

which a food source cannot be improved further before it
is assumed to be abandoned (limit), and a termination
criterion.

In the first step, besides setting the parameters of the
algorithm, the PMABCA will generate the initial food
sources by using a random approach. Let X, = {x,, x,,
.., x,,} represent the i-th food source in the population,
where d is the problem dimension. Each food source is
generated as follows:

Start

Initialize parameters of the algorithm
and food sources
Update archive and the upper value
of the preference
|
Employed bees optimization

i

Fitness assignment based on the
preference distance

i

| Onlooker bees optimization |

!

| Scouts optimization |

1

Update archive and the upper value
of the preference

Wipe off extra solutions using the
improved crowding distance operator

Output the whole preferenced and
nonpreferenced solutions

End

Fig.1 Flowchart of the PMABCA

x,; =x"™ +rand(0, 1) (x™ —x™) (6)

ij

where x"* and x;“i" are the upper and lower bounds for the
dimension j, respectively.
3.1.2 Employed bees optimization

At the stage of the employed bees’ optimization, each
employed bee produces a new candidate food source in
the neighborhood of its current position. After that, a
greedy selection procedure is carried out to decide which
one will be kept in the population. If the candidate solu-
tion can dominate the previous one, the employed bee
will memorize the new position and forget the previous
one. Otherwise, the employed bee discards the new solu-
tion and keeps the previous position in its memory.

In order to generate good quality and diversity neigh-
boring solutions, SBX and PM are introduced to generate
promising solutions'""'.

3.1.3 Fitness assignment based on the preference
distance

After all the employed bees complete the local search
process, they share the position information of the food
sources with the onlookers. In the next step, each on-
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looker bee will choose a food source depending on its
quality.

With the Pareto-based methods, the relationships be-
tween the solutions are expressed by dominated or not'"".
First, the nondominated individuals in the whole popula-
tion are selected as the first rank solutions and its rank is
set as one. Next, the nondominated individuals among
the remaining are selected as the second rank solutions
and its rank is set as two and so on, until the population
is zero.

In the PMABCA, the quality of a food source is ex-
pressed by the fitness value; all the bees are sorted based
on their nondominated rank and the preference distance.
The fitness value of the i-th food source is calculated by
using the following equation:

1

fit(X,) =ﬁ

n,i p.i

(7)
where r, ; and d,, represent the nondominated rank and
the preference distance of the i-th food source, respective-
ly.
3.1.4 Onlooker bees optimization

At this stage, each onlooker selects a food source based
on the fitness value calculated before. After the food
source is selected, each onlooker bee will perform the
same local search approaches and greedy selection proce-
dure as the employed bees.

In the PMABCA, based on the fitness value calculated
before, the probability for each food source advertised by
the corresponding employed bee will be calculated as fol-

7
lows!”:

fit(X,)
p{T(X) =X} = — (8)

N

Y fit(X))

where 7.( - ) is the selection function.
3.1.5 Scouts optimization

If a food source cannot be further improved through a
limit cycle, then the food source is assumed to be aban-
doned and the corresponding bee will become a scout'’’.
Then the scout conducts a random search, and generates a
new food source following the initialization of the popula-
tion.
3.1.6 Archive updating and preference upper limit

renewal

In the first run, nondominated solutions are added to
the archive directly. After that, in the end of each itera-
tion, the new generated nondominated solutions are com-
pared to the solutions in the archive. The candidate solu-
tions that are not dominated by the solutions of the ar-
chive are added to it. Then, the dominated solutions are
removed from the archive.

As the capacity of the archive is finite, if the archive is
full of nondominated solutions, it is necessary to remove

the extra ones. In the PMABCA, many preference solu-
tions and a few other solutions are kept in the same ar-
chive. Hence, the traditional diversity maintenance strate-
gy to keep the uniformity is not appropriate. In this pa-
per, an improved CD operator is applied to remove the
extra ones.

The CD is first addressed by Deb'"*' for keeping a uni-
formly spread-out of the P.. The CD value of the i-th in-
dividual is calculated as follows:

dCD,i = ZdCD,ij
j=1
and

® fy =1 o fy ="
d. =lp o _p , (9)
CD,ij f(,+1).] f(z.n.] otherwise

max_ min
5=t

where 7" and f7" are the maximum and minimum value
of the j-th objective; f,.,, ; and f,_,, ; are the j-th objec-
tive value of the nearest neighbors to the i-th individual in
the population.

In the PMABCA, the CD is improved and uses the fol-
lowing equation :

Ay
dlcn,i = {d o
D, i

d,; <p

10
otherwise (10)

where 3 is the upper limit for preference, and A is the co-
efficient for the preference solutions.

The value of A is set to be 4 after a large number of ex-
periments. If more preference solutions are preferred, the
value of A can be set to be greater than 4. In addition,
the value of B is set adaptively according to the medial
value of the preference distance in the former archive. To
be more specific, 8 is equal to the k-th value of the as-
cending sequence according to the preference value in
each iteration, where k is set to be 0. 6n,, and n, is the
size of the archive.

3.1.7 Extra solutions removal in the archive

In order to obtain a good distribution of P, the meth-
od proposed in Ref. [ 15] is adopted to remove the extra
solutions. The extra ones with the smallest CD values are
removed one by one, and the CD values for the remai-
ning members of the set are updated after each removal.

3.2 Verification and comparison of PMABCA

In this section, the computational results obtained by
the PMABCA is compared to the NSGAII'*' and the
PMABCA_D, respectively. The running mechanism of
the PMABCA _D is the same as that of the PMABCA.
The only difference between them is a different preference
expression method. Specifically, the PMABC_D adopts
the weighted Euclidean distance measure addressed by
Deb.
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The selected two test functions P, and P, are given as Tab.1 Running time of the three algorithms $
follows'"*'® . Problem NGSA I PMABCA_D PMABCA

P, 49.108 9 28.420 1 30.687 2
fl =X P, 57.765 2 29.318 6 31.789 3
2
X X .
f=(1+10y) [1 - (1 A lOy) 1+ loybln(2“4x) ] the 30 runs.

x,ye[0,10]

fi=x+(y-1)°
fZ:x2+(y+l)2+l} x,yel -2,2]7 (12)
ﬁ:(x—1)2+y2+2

(11)

The experiments are executed in a PC using Matlab,
and the clock speed of the PC is 2. 6 GHz. The popula-
tion size and archive size of the three algorithms are all
set to be 100 and 50, respectively. In order to compare
the running time of these algorithms better, the iteration
cycle is set to be 1 000. In the experiments, we per-
formed 30 independent runs on each test problem. What
is listed in Tab. 1 is the average CPU execution time of

It is clear that the PMABCA _D is the fastest, the
PMABCA is slightly slower, and the NSGAII is the slo-
west. The PMABCA is somewhat slower than the PMAB-
CA_D, which is mainly due to the new proposed prefer-
ence distance calculation operator. The longest running
time of the NSGA I is most likely deduced by the mating
selection operator, moreover, there are more individuals
to be compared during the searching process.

Fig. 2 and Fig. 3 are the comparisons of the experimen-
tal results. In problem P, , the reference point is set to be
(0.5,1), and the coefficients are set to be (0.5,0.5). As
for the problem P, , the reference point is set to be (3,4,
3), and the coefficients are set to be (0.5,0.25,0.25).

1O . — 10— 1.0 :
LS i
% ‘
*+ ; H : & »
0.5 S ] R SRS SO A b1 S | N - 1
H 1 H H i+ H H H 3
4 :
B i3 g P “8 +
Y * -
#* : % * + *
(] + 0 * 0 , +
¥ + +
: *
: * +
i . :
P : i ; PR P
~0.5 A S S A ~0.5 S R S NS NS S S ~0.5 A S T SN N R +
"0 0.10.20.30.4 0.506 0.70.8 0.9 "0 0.10.2 0.3 0.4 0.50.6 0.70.8 0.9 >0 0.10.2 0.3 0.4 0.50.6 0.70.8 0.9

1

(a)

1

(b)

(¢)

Fig.2 Experimental results of problem P,. (a) NGSAT ; (b) PMABCA; (c) PMABCA_D

(b)

Fig.3 Experimental results of problem P,. (a) NGSAT ; (b) PMABCA; (c) PMABCA_D

As shown in Fig.2 and Fig. 3, both the PMABCA and
the PMABCA_D converge on the P, and there are more
preference solutions than non-preference solutions. Com-
paring the P, of PMABCA to that of PMABCA_D, it is
clear that the preference area in the PMABCA is more
compact.

4 Optimization of Superheated Steam Tempera-
ture Control

4.1 PID controller of superheated steam temperature

A simplified block diagram of the superheated steam

temperature cascade control system which uses spray wa-
ter injection as the deputy controller is shown in Fig.
4 [17] .
extracted to quickly respond, serves as a deputy control-

The spray water injection control system, which is

ler; the superheated outlet steam temperature, which is
characterized by hysteresis and nonlinearity, serves as the
primary controller.

In Fig.4, r is the set point of superheated steam tem-
perature; T, is the intermediate steam temperature; 7 is
the superheated steam temperature; W, (s) and W, (s)
are the deputy and the primary controller, respectively;
W, (s) and W, (s) are the corresponding transfer func-
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-
Win(s)

Fig.4 The boil superheated steam temperature cascade control
system

tions, mA/C; W, (s) and W,,(s) are the correspond-
ing measurement units. The transfer functions of the in-
termediate and superheated steam temperatures are shown
as follows'"™ ;

_ 8
Wa(5) = s (13)
1,125
WOZ(S)_(1+25S)3 (14)

Since the deputy controller only approximately regu-
lates the intermediate steam temperature, a fixed propor-
tional controller is usually used in order to simplify the
design of the controller, W, (s) =K. The primary con-
troller is employed to regulate the steam temperature to its
set point precisely, and it is designed to be a PID control-
ler, W,(s) =K, + K,/s + K, s. The deputy controller
and the primary controller of the cascade control system
can be adjusted respectively. The purpose of this paper is
to search for the design parameters of the primary control-
ler by the PMABCA.

4.2 Principle of multiobjective PID parameter opti-
mization

In this paper, we adopt ¢,, o, ¢ and ITAE as the ob-
jectives of the primary controller optimization in the su-
perheated steam temperature cascade control system. In
order to decrease the relativity of the objectives and in-
crease the influence of the steady-state error, the ITAE is
redefined as

+ oo

ITAE’ =j tle(n) |ar (15)

1+

where ¢, means the settling time with an error bound of
5% . The definition of the ITAE is changed, only consid-
ering the errors after the settling time. Since before the
t,, the ITAE is relative to ¢ and . With Eq. (15), the
relationships among ¢, ¢ and ITAE are weakened. With
the multiobjective optimization model, the PID parameter
optimization is described as

min (7., 100 -y, o, ITAE')
st Ko <K <K .., Koo <K <Ko, K <K, <K

pmin ™~ pmax imin imax 2
(16)

4.3 Simulation results

Since predicting the ITAE value is somewhat difficult,
the DM cannot properly express the preference for it.

Whereas it is relatively simple to express preference via the
parameters ¢, o and . Here the reference point is set to
be 130, 10% , 95% , and there are no bias among all the
objectives; i.e. , the coefficients are set to be 1/3,1/3,1/3.

The bound values of K,, K; and K, are set according to
Ref. [ 18], which are 2<K,<4.5, 0.035<K,<0. 11,
30<K,<45. The PID parameters are tuned based on the
step response experiment.

With the PMABCA, plenty of Pareto optimal solutions
are achieved. Due to the limited space, only five groups
of parameters are listed in Tab. 2. Step responses curves
of the first two selected groups of parameters are shown in
Fig.5 with solid lines. As for comparison, the step re-
sponses curves of the top two groups parameters proposed
in Ref. [ 17 ] are also shown in Fig. 5 with dotted lines. It
is clear that the simulation results of the PMABCA are
more satisfactory than those of Ref. [ 17]. In addition,
the preference distance values of each solution achieved
by the PMABCA aid the DM in making a reasonable de-
cision.

Tab.2  Parameter and objective values of the selected ten
groups
[ ki ke  t/s  o/% (100 -y)/% ITAE'
40.7645 2.3655 0.0407 108 8.9864 2.3982 52.7251
36.9386 2.2008 0.0383 115 8.6919 1.5183 50.174 6
35.166 8 2.0800 0.0366 121 7.8804 1.2894 45.4324
43.9222 2.7090 0.0400 140 9.5496 0.7524 66.916 6
44.6352 2.5810 0.0381 133 6.8794 0.0949 68.1415
14
12 AR
10 e
5\) ; 5
£ 8
=
E 6 —— The 2nd solution of PMABCA
g —— The 1st solution of PMABCA
=4 ~+- The 1st solution in Ref. [ 17 ]
5 =+ The 2nd solution in Ref. [17 ]
% 100 200 300 400

Time/s

Fig.5 Comparison of the step response curves

5 Conclusion

A novel preference expression method is addressed,
and a new preference-based multiobjective ABC algorithm
is proposed. With the PMABCA, instead of the well cov-
ered and uniformly distributed set of Pareto optimal solu-
tions, a preferred set of solutions and some other non-
preference solutions are found simultaneously. Experi-
mental results on the benchmark test problems validate its
effectiveness. The preferences for different objectives can
be expressed in the calculated solutions. Consequently,
the PMABCA is used for the PID controller parameter
tuning in the superheated steam temperature cascade con-
trol system of a boiler. Simulation results show that the
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DM’s preference can be easily addressed. A set of solu-
tions which can meet the preference will aid the DM in
making a reasonable decision.
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BEATHRRENRITEZAE 2 BAFERLMBEIEP, BT —FRIF % B FEFMLACE X PMAB-
CA. /£t PMABCA W 268 7T — A3 69 piF e B it A 7 ik A T IR TR S5 RIFES T LT E N E 5 R H
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