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Abstract: A decision model to maximize the total profit of

manufacturers in an imperfect production system is
constructed. In this model, the production reliability and the
warranty length are jointly used as decision variables for the
case that products are sold with a warranty; i.e., the demand
is dependent on the warranty length and sale price. Also, all
the non-conforming quality (defective) items in the production
process are refurbished to conform to quality ones at a cost.
The existence and uniqueness of the optimal values of
production reliability and the warranty length are proved by
using the Euler-Lagrange method in analyzing the model. A
numerical example is also provided to the

effectiveness of the decision model. The sensitivity analysis of

illustrate

the key parameters of the optimal solution and objective value
is presented in addition.
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production reliability; Euler-Lagrange method
doi: 10. 3969/j. issn. 1003 —7985.2014. 04. 023
his paper intends to construct a decision model to

T maximize the total profit for manufacturers. To
reach the goal of profit maximization, manufacturers need
to increase the revenue and reduce the costs.
the revenue, product quality is an important factor for
manufacturers to attract more buyers. Therefore, produc-
ers often provide a longer product warranty as a guarantee
of the good quality of the products.

Some researchers studied the optimal production policy
under the condition that products are sold with a warranty

in an imperfect production system' ™.
focus their attention on the sale policy under the condition

To increase

Other researchers

when products are sold with warranty. They presented a
model to determine the optimal sale price and the warran-
ty length with profit maximization'””'. However, one of
the problems for these studies is that the rework cost of

imperfect items is ignored.

Received 2014-02-16.

Biographies: Wu Junjian(1986—), male, graduate; Wang Haiyan( cor-
responding author), male, doctor, professor, hywang@ seu. edu. cn.
Foundation items: The National Natural Science Foundation of China
(No.71171049), the Scientific Innovation Research of College Gradu-
ates in Jiangsu Province (No. CXLX13 _097).

Citation: Wu Junjian, Wang Haiyan. A decision model of optimal pro-
duction reliability and warranty length in an imperfect production system
[J]. Journal of Southeast University ( English Edition), 2014, 30(4):537
—543. [doi: 10.3969/j. issn. 1003 —7985.2014.04.023]

On the cost control side, manufacturers need to reduce
the defects. Ideally, the production system should work
under perfect conditions and have zero defects by drawing
maintenance policy for production machines''.
ity, however, the production system can have different
problems for different reasons, such as machine aging,

workers’ mistakes, etc.; i.e., the production system is
191

In real-

imperfect . Under these conditions, the production sys-
tem will produce non-conforming quality ( defective)
items. The defective products are usually refurbished so
that materials can be reused and the value of the defective
items be recovered. Obviously, the manufacturers should
minimize the rework cost.

The rate of defective items is related to the reliability of
the production process. There are two different approa-
ches for studying the reliability of production processes in
the literature. The first approach proposes that the pro-
duction system is required to produce 100% conforming
quality items when appropriate advanced machineries and
technologies are used. However, malfunctions of the pro-
duction system do occur from time to time. The reliabili-
ty of the production system is the rate of defects and the
total products. This rate is denoted by # which is between
Oand1, i.e.,0<@<1. Manufacturers will determine the
optimal value of # to maximize the profit or minimize the
t"“""" The second approach contends that ¢ is a num-
ber which is between a maximum value and a minimal
value due to the production machines constraint and basic
product quality required, i.e., Oe[6,,,0,.]-
duction reliability is a decision variable which can be ad-
justed to the optimal value to maximize profit'*™"
ever, either of these two approaches considers the product
warranty policy.

COs

The pro-

. How-

To remedy these problems, we try to develop a model
by optimizing production reliability and warranty length
simultaneously for an imperfect production with rework
items.

1 Problem Description and Assumptions

All the manufacturers want to gain a competitive edge
in the market and achieve a higher profit. So, in the pro-
duction process, they must make an effective investment
decision concerning the reliability of the production
process; i. e., they need to determine the optimal pro-
duction reliability. For the same type product, a higher
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reliability in the production process can help the firm to
obtain more profit in a competitive market. At the prod-
uct sales stage, the manufacturers need to make an effec-
tive sale policy. The product warranty policy is widely
used as an incentive to attract more customers. Thus, the
manufacturers need to determine an optimal product war-
ranty length. Both the reliability of the production process
and warranty length are related to the manufacturers’ prof-
its. Therefore, the manufacturers need to determine the
optimal reliability of the production process and optimal
warranty length in order to maximize the total profits of
the production system.

The decision model is built with the following assump-
tions:

1) The imperfect production system produces only two
types of items for a single product, conforming quality
items and nonconforming quality ( defective) items. A
defective item can be refurbished at the cost of making a
conforming item.

2) The production rate is greater than the demand of
the product; i.e., shortage is not allowed.

3) The failure rate of post-sale products follows an ex-
ponential failure distribution.

4) The length of the production cycle T is finite.

2 Formulation and Analysis of the Model

2.1 Formulation of the model

The total cost consists of the development cost, the
unit production cost, rework cost for defective items, in-
ventory holding cost and warranty cost. The effects of in-
flation and time value of money also should be consid-
ered.

The development cost is a function of product reliabili-
ty 6. It can be expressed as'"”!

D.(6) =A + Be! "=~ (1)
where 0 = Number of fallur.es . 6 has the
Total number of operating hours
lower bound 6, and the upper bound 6 ., i.e., 0 e

[6,> 0o ] - Smaller values of production process reliabil-
ity indicates more conforming to quality products and a
higher production process reliability. The parameters A,
B, k are positive constants.

The unit production cost is a function of product relia-
bility # and dynamic production rate p(#). It is expressed

6
as[ ]

D.(6)
+ +ap(t) (2)
pin ¥
where M. is the material cost, which partly depends on
6, i.e., M. =M, -M .6, and M. >0, M, =0. The pa-
rameter ¢ is a variation constant of tool/die cost. It is

clear that P.(t, ) is the minimum at p(?) = ./D.(6)/«.
Let R, denote the rework costs for each unit of defective

P.(t,0) =M,

items, and then the rework cost for these defective items
is R, 0p(1)

The demand function depends log-linearly on the sale
price S, and the warranty length W. It can be expressed

7
as[ 1

D=D(S,, W) =k, S;“(k, + W)" (3)

where k; >0,k,=0,a>1 and 0 < b <1. The parameter k,
is an amplitude factor and k, is a time displacement con-
stant. The parameters a and b represent the price elastic-
ity and the displaced warranty length elasticity, respec-
tively.

In this paper, we assume that the product failure rate is
exponentially distributed. When the production reliability
is denoted by 6 and the repair cost per unit item is deno-
ted by R,. It is easy to obtain the expected warranty cost
during the warranty period R,6WD.

We assume that the on-hand inventory Q(¢) is zero at ¢
=0andt=T, i.e.,Q(0) =Q(T) =0. The change of the
inventory level can therefore be expressed as the follow-
ing differential equation:

0= = (1) - D(s, W) (4)
Assume that H. denotes the inventory holding cost per
item per unit time. Hence, the inventory holding cost

T
during [0, T} is f H.Qdt .
0

Inflation exists in every economy, especially, in devel-
oping economies and the inflation rate will in turn affect
the interest rate. To incorporate the effects of the interest
rate and the inflation rate, we use r and i to denote the in-
terest rate and the inflation rate respectively, and thus & =
r—i.

From the previous analysis, the total profit function
with the effect of inflation and time-value of money dur-
ing [0, 7] can be expressed as

ﬂ=ijH&—Pd@0MU)—&@U)_
R,0WD(S,, W) — H.Q}dt =
fe*a’{(sP -M. -R6)(0 +D) -D.(6) -

a(Q +D)* —R,6WD - H.Q}dt =

[ w0 0. nar )

where
$(0.0.10) =e " {(S, ~M. -R,0) (0 +D) -D.(6) -
a(Q+D)* ~R,6WD - H.Q} (6)

2.2 Analysis of the model

Lemma 1 The total profit function 7 has a maximum
value with Q = Q(¢) in the interval [0, T].
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Proof We denote

1e[0,7] (7)

where ¢ is a sufficiently small variable; /(t) is a first
continuous differentiable function of ¢ and /() =0 for all
values of . From Q,(0) =Q,(T) =0, it is clear that /
(0) =Z(T) =0. The value of the total profit function 7
for Q,(¢) is given by

Q.(1) =0(1) +&{(1)

m(e) = fongdt (8)

where ¢, = (O(1) +&l(1), Q(1) +&l(1),1).
To find the maximum value of 77(¢), we must have
am(e)/0e =0 and *7(e)/de” <0. Since & is a suffi-

ciently small variable, we can let £ =0; i.e., we must
2
have Im(e) and w < 0. Calculating the
& £=0 de £=0

first order and the second order derivative of 77 (&) with
respect to g, we obtain

] = e 5 e o =
d ( I\, 0T e) -
f{( ){aQ at(aQ)}dt de es0
fo{zm S5 i Sl =
' 0 (a4, 97(e)
[g(t) ' f{( ){ (aQ)}dt de .o
) {en 57 i + (0 Gl =
0 (o
f{( ){aQ at(aQ')}dt (9
_ [ l VY 20y
I R A R g
(10)
Therefore, the necessary condition for the extreme val-
ue existence of 7 is @ » =0, i.e., % - %
o\ _
(aQ) =0
Differentiating the function ¢ with respect to Q and Q,
we obtain
Wy w O _
00" H.e ™, %) =[ -2a(Q+D) +(S, -M.-R,0)]e
(11)
Py _ o Y o A s
o 8Q6)Q_O’ 00 2ae (12)

Substituting Eq. (11) and Eq. (12) into Eq. (10), we
obtain

(&)
ae”

(13)

T .
= —zaf e?Pdr <0
=0 0

&=

Therefore, by the differential and integral calculus, we
find that the profit function 7 has a maximum value. The
proof is completed.

The Euler-Lagrange equation for the maximum value of

T is
ap 0 (o
——-—( x| = 14
a0 at(aQ) (14)
Substituting Eq. (6) into Eq. (14), we obtain
.. . H.-6N
Q—5Q=27+5Dél‘ (15)

where N =S8, - M. +w,60>0 and w, =M. - R, <0.
Solving the second order differential equation, we ob-
tain that the general solution of Q(t) is
Q=E+Fe5’—§t (16)

where E and F are the abstract functions. Now, using the

boundary conditions, Q(0) =0 = Q(T), the values of E
and F are
TL
E = - F = - = - L 17
s’ -1 an
T
h =———>0

where v, 5e" _1)

Using Eq. (4),
obtained as

the optimal dynamic production rate is

p(1) =8vlLea’—é+D (18)

Substituting Eq. (18) into Eq. (5),
tion can be expressed as

the total profit func-

T 2
ot St L St L
= _Lt N -D.(0) — _t -
T J’Oe {(BFe 5 +D) -(6) (6Fe 5 +D)a
ROWD — (E + Fe* —LI)HC }dt =
o
u,LN —v,DN +v,D.(0) + 2 5 Sy oy av,D’ -
MIHC
2au,DL + R,v,0WD — 5 L (19)

where v, = (e™ - 1)/86 <0, u, = T + v,/8 =

_ (8D2k+2 oo
2 2k 2] /[8(e" -1)] <0.
Theorem 1 If k' <k<k", the equation % =0 has a

unique solution #* in [Gmin + %k( 0ae — Oin) > emax],

where

k’:—1+\/1+

M] Swz( 0mux - emin) ’
2aBv, ’

k" =min{1, K}
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u,ow, uwoH,
——N@#,..) —(6u, —v,)w,D - Ry, W —————1(6,, —0,x)

20

v,B

Proof Let 7 be a function of 4, i.e. 7 =7(6). Cal-
culating the first order derivative of 77( ) with respect to
0 and simplification, we obtain

o 1, 6w aD.(6)
- '2a0N+(8u1 —vz)woD+v2#+
uwoH.
RZVZWD + T (20)
o’ u, 5w, 9°D.(6)
- _ . 21
e e TV Py (21)
where
oD.(0) :Bk( 0 i — emdx)ck(e,,,,—m/(ﬁ ) (22)
a0 (6- Hmin)
w _ 2 + k( emm - max) )
802 - 0 - Omin (0 - gmin)
Bk(emm—_max) KO =0) /(0 = Ori) (23
(0 - 6min) )
aD.( 6 3°D.(6
and g; ) <0, aceg ) > 0 for all values of 6 e

[ gmin + %k( gmax - 0min ) ’ omax .

Let ¢(0) =%by v, <0 and Eq. (22),

limp(H) = + ». By Eq. (20) and Eq. (22), we obtain
0—0,,,

and we have

u 10w,
go( emax ) - 2

uw,H, +
20 (7]

——N(0,,.) + (Su, —v,)w,D +

v,Bk
-6

R,v,WD + (24)

min max

W,
——N(6,..)

2a - (6, -

Therefore, ¢(6,,.) <O=k< (u

uwoH,

v,)woD - Ryv, W — )(em— 0..)/v,B=K,. Let

k"=min{1,K,|. The equation ¢ (8) = ?Tg =0 at least
. . 1
has a solution #” in [Gmm + Tk( 0rax = Oin) ,Omax] , when

0<k<k". By v, <0, Eq. (21) and Eq. (23), we have

1

@'(0) = P2 C <0 (B) =

(gmax _0n1i11)2 '
u, 8w,
[(sz>/<2 (208 k= " (0, = 0,,,)°
2a
u,dw;
Let (k) = (v,B)K + (2v,B)k =5 (O, = Oia)
(61

By solving the equation ¢(k) =0, we obtain k' = -1 +
1 +u,6w,(6,, —0,,) /2aBv,. By v,B <0, we know

that ¢ (k) <0 when k=k’. Hence,

O _ 1 b(k) <0
602 ( am'\X - el'l'lln )

¢'(0) =

So, the equation ¢(0) = *0

0 has a unique solution
0* in [amin + %k( amax - 0min) ’emax] When k, = k = k”'
The proof is completed.

Theorem2 If9ec[h,0,, ] the equation STWV =0 has a

unique solution W* in [0, e ), where 6§ =max {4, ,6, |
and

0, =
= (0,8 =v,) (S, =M.) +uH. —2a(v, —6u1)le;’ ks
kR
(u,6 =v,)w, +2T2V2

Proof Let 7 be a function of W, i.e., m=a7(W).
Calculating the first order and second order derivative of
(W) with respect to W and simplification, we obtain

om _
oW "~
k +W

[(u16_vz)N_u1HC +20£(Vz _5141)D+R2V20( th +W)]DW
=n(W)D, (25)
&
o =n(WIDyy + [2a(v, ~6u,) Dy +sze( 1oy

(26)
where

n(W) =(u,6-v,)N—u H. +2a(v, —6u,)D +

k, +W
R2v20( b

+W) (27)

D v b
Dy =i = b8y (ks + W)™ =D (28)

o’D
= =b(b-
ow? (

D 1)k, S, (ky + W)*2 (29)

ww

It can be clearly demonstrated that D, >0, D,, <0.

By v, —8u, = -8v,T<0, n(W) is a strictly decreasing
. . .o
function of W and }VEE’?( W)— — «. Therefore, vlvllrmlaT/V
— — . On the other hand,
7n(0) >0=6 >
- (u,6-v,) (S, =M,) +u,H. —2a(v, -bu, ) k,S,* K

k2R2 V2 o
b

(u, 8 =vy)w, +
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>0 for all

w=0

Let § =max {6, .6, . We obtain that om

values of fe [ 6,86,, |. Therefore, the equation %IT/ =0

has the unique solution W* in [0, o ) when 6 e [ 9,
gmax J *

Theorem 3 The joint equation om _ 0 and om _ 0 has
oW a0

a unique solution (W*,0") for Win [0, + » ) and 6 in

The proof is completed.

[6',0,, ] where ' = max{@),f)min + %( 0 — 0.i) }
Proof By Eq. (25), we obtain

~(u,8-v,)(S, -M.) +u H. -2a(v, -6u,)D
(k, + W)
P

0=0(W) =
(0,8 =v,)w, +R2V2[ W]
(30)

Therefore, the value of @ is determined by W solely.
Substituting Eq. (30) into Eq. (20), we obtain
u, 6w,
x(W) = —?[sp -M. +w,0(W) ]+ (8u, —=v,)w,D +
R.v.WD uwoH, + v,Bk(6,,, - amax)Ck((?w—(?(W))/(H(W) ~0,)
e 2a (O(W) =6,,)°

By the proof process of Theorem 2, we know that the
solution of equation y( W) =0 exists and is unique in [0,
+o ) when §e[60',6,, ], where

max

0 =max[0.0,+ 5 (0 ~0u) | 3D

Hence, the joint equation om _ 0 and om _ 0 has a
oW a6

unique solution (W~ ,0") for Win [0, + o ) and 6 in
[6',6,, ]. The proof is completed.

3 Numerical Example

We assume that the values of parameters in this model
are as follows: 0, =0.1,6,,.=0.9,6=0.01, A=100
dollar, B =150 dollar, £ =0.15, §, =95 dollar, M =
15 dollar, M. =1 dollar, R, =8 dollar, R, =10 dollar,
k,=1500, a=1.2, k, =2.8 month, »=0.6, =0.02,
and 7 =2 month. To find the impact of reliability of the
production process on the development cost and the total

max

profit, we take the production reliability as decision varia-
bility. By Eq. (1) and Eq. (19), we let W =12 month
and use the previous values of parameters, we obtain the
optimal product §” =0.25 with maximal profit 77" =2
669 dollar by Matlab 7.0 (see Fig. 1). By Theorem 1,
the optimal solution is the global optimal solution.

From Fig. 1, when manufacturers take some measures
to improve the reliability of the production process(i. e. ,
they lower the value of production reliability, even
though that will result in a higher development cost) , the
manufacturers achieve higher profits and reach the maxi-

mal profit at 8" =0.25. However, after that, if manufac-
turers continue to increase investment in the reliability of
production process, the development cost will directly in-
crease and the total profit will decrease. Consequently,
the model can be used to help manufacturers draw up an
effective investment policy regarding the reliability of
production process.

2 500r —— Development cost - 700

—+— Total profit

[\S)
[=]
[=]
S

T

L
[=))
S

400

Total profit/dollar
= =
S S
S S
; @
S
S
Development cost/dollar

5001 1300

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Production reliability

Fig. 1

cost

Production reliability vs. total profit and development

To assess the impact of the warranty length on both the
warranty cost and the total profit, we take the warranty
length as decision variability. By the expected warranty
cost R,0WD and Eq. (19), we let § =0.30 and use the
previous values for the parameters. We obtain the optimal
warranty length W* =18. 6 month with the maximum prof-
it 77 =2399 dollar by Matlab 7. 0 (see Fig.2). By Theo-
rem 2, the optimal solution is the global optimal solution.

From Fig.2, we can see that the warranty cost increa-
ses when the warranty length increases. In the interval
[0,18.6], the total profit increases when warranty length
increases. The total profit is maximized at W* =
18. 6 month. The manufacturers often increase the sale
volume by giving a longer warranty length. But when the
warranty length is greater than 18. 6 month, the warranty
cost will increase and the total profit will decrease.
Therefore , this model can be used to help the manufactur-
ers determine an optimal product warranty length with
maximum profit.

3 000 16 000
2 6001
. 2200f =
= 4000 5
1 800} 2
L.g o
g, 1400 £
3 2
< 10007 12000 &
B
6001
2001 0
0O 5 10 15 20 25 30 35 40
Warranty length/month
Fig.2 The warranty length vs. the total profit and warranty cost
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The manufacturers often take some measures to obtain
more profit, and those measures not only impact the opti-
mal product reliability but also impact the optimal warran-
ty length. To understand the phenomenon clearly, we
take both the product reliability and warranty length as
decision variables. By Eq. (19), and using the previous
values of parameters, we obtain the maximum profit 7"
=2 247 dollar at #° =0.22 and W" =21. 58 month by
Matlab 7.0 (see Fig.3).

1
= o Nw
S W O

-2.544
-4.04

Total profit/103dollar

| I
ol
N o W

1,05
5 75090
. 0.60

' 0 300' AN
o 070,150
22z, O™

prod™

Fig.3 Total profit vs. warranty length and production reliability

From Fig. 3, we know that the optimal solution (8",
W™ ) is the global optimal solution. Hence, the model
can be used to help the manufacturers create an effective
policy to improve their profits when both the reliability of
the production process and warranty length are consid-
ered. The sensitivity analysis of key parameters is in
Tab. 1.

Tab.1 Sensitivity analysis of key parameters %
Parameters +/ - 0" w* T
+50 +21. 11 -18.16 -11.77
+25 +7.04 -4.54 -6.42
k -25 -14.07 +18. 16 +8.46
-50 -21.11 +31.79 +19.10
+50 -7.04 +9.08 +69.52
K, +25 -7.04 +9.08 +34.79
-25 +7.04 -4.54 -33.91
-50 +14.07 -9.08 —-66. 66
+50 +316. 67 -81.74 -115.23
+25 +49.72 -36.33 -96.47
“ -25 -21.11 +22.71 —48. 66
-50 -28.15 +9.08 +93.40
+50 0 -4.54 +3.85
k, +25 0 0 +1.93
-25 0 +4.54 -1.90
-50 0 +4.54 -3.81
+50 -21.11 +68. 12 +200. 41
+25 -14.07 +40. 87 +74.25
b -25 +14.07 -31.79 -42.46
-50 +56. 30 -68.12 -66. 08

From Tab. 1, we can see clearly that the impact of the
parameters change value on the optimal production relia-
bility, optimal warranty length and the maximum total
profit. For instance, the change of parameter k, has im-
pacts on the optimal warranty length W* but not on the
optimal production reliability #°. As the parameter k de-
creases, W’

As a result, §° must decrease (implying a more relia-

increases and can attract more consumers.

ble production process) to reduce the warranty cost and
increase profit. Consequently, the model can be used for
the manufacturers to improve the production process and
make an optimal warranty sale policy with profit maximi-
zation.

4 Conclusion

In an imperfect production process, the manufacturers
need to decide what is their optimal production reliability
and product warrant length. The model constructed in this
paper can be used for the manufacturers to make effective
investment policies to succeed when competing with simi-
lar products. The sale price is fixed for a fixed period.
So, the product quality is very important in the competi-
tive market. Product quality is related to the reliability of
the production process. Thus, the model is useful for de-
termining an optimal production reliability for the manu-
facturers who sell their products with warranties. Longer
warranty length is an effective strategy to improve the sale
volume, because it often implies higher product quality.
However, too long warranty length results in higher ex-
pected warranty costs and lower profits. Therefore, it is
very important to make an optimal warranty sale policy
with profit maximization. The model can be used to solve
the proposed problems. Both the reliability of production
process and warranty length have impact on the total prof-
it. From Tab. 1, we can see that this model can also
guide the manufacturers in their strategic planning to max-
imize their profits.
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