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Abstract: Quasi-cyclic low-density parity-check ( QC-LDPC)
codes can be constructed conveniently by cyclic lifting of
protographs. For the purpose of eliminating short cycles in the
Tanner graph to guarantee performance, first an algorithm to
enumerate the harmful short cycles in the protograph is
designed, and then a greedy algorithm is proposed to assign
proper permutation shifts to permutation
submatrices in the parity check matrix after lifting. Compared
with the existing deterministic edge swapping ( DES)
algorithms, the proposed greedy algorithm adds more
constraints in the assignment of permutation shifts to improve
performance. Simulation results verify that it outperforms DES
in reducing short cycles. In addition, it is proved that the
parity check matrices of the cyclic lifted QC-LDPC codes can
be transformed into block lower triangular ones when the
lifting factor is a power of 2. Utilizing this property, the QC-
LDPC codes can be encoded by preprocessing the base
matrices, which reduces the encoding complexity to a large
extent.
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the circulant

binary LDPC code is defined by its sparse parity

check matrix H = (h,;) and the corresponding
Tanner graph. The Tanner graph consists of variable
nodes v; corresponding to the columns of the parity check
matrix, check nodes c, representing the rows, and edges
{i, j} connecting the two types of nodes. If the entries of
1 in a LDPC parity check matrix H of size m x n are re-
placed with non-zero submatrices of size e x e and the en-
tries of O are replaced with zero submatrices of size e x e,
the code (base code) develops into an e-lifted code whose
parity check matrix is H = [H, ;1 of size me x ne. If each
nonzero submatrix H,; is a circulant permutation matrix
with permutation shift s, ;, which means that H, ; cyclical-
ly shifts the columns of an e x e identity matrix by s, ; to
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the bottom, then the lifted code is quasi-cyclic. Such a
way to construct QC-LDPC codes is named as cyclic lift-
ing!"™ of protographs™™, where protographs refer to the
Tanner graphs of base codes.

The key problem in cyclic lifting is the elimination of
short cycles. This paper proposes algorithms to enumerate
and eliminate harmful short cycles to construct QC-LDPC
codes with good performance. In addition, this paper
proposes a novel encoding method for cyclic lifted QC-
LDPC codes, which can greatly reduce the complexity of
preprocessing parity check matrices in encoding.

1 Enumeration of Cycles

A path in Tanner graph starts from a node and reaches
a node through distinct edges. The length of a path is the
number of edges in the path. A cycle is a path whose start
and end are the same node while other nodes are distinct.
Also, extrinsic message degree (EMD)"' and approxi-
mate cycle extrinsic message degree (ACE) "' are defined
to measure the influence of a certain cycle on the per-
formance of the code. Since stopping sets'® and trapping
sets'”! contain cycles with small EMD"™*, short cycles
with small EMD or ACE should be eschewed to improve
the performance of the code. The following theorem re-
veals the relationship between the cycles in the protograph
and those in the Tanner graph after cyclic lifting.

Theorem 1 Code C is a cyclic e-lifted code of base
code C, and v is a cycle of length A in the Tanner graph
of C. The inverse image of 7y in the Tanner graph of C is
a union of e/k cycles with length kA.

e
k= GCD(e, s)

is the order of permutation shift of y and

A
s =Y (—1)'s,mod e

is the permutation shift of y after lifting, where s, is the
permutation shift of the submatrix in the lifted parity
check matrix H that corresponds to the i-th edge in 7.
The proof can be seen in Refs. [2,9]. It shows that cy-
cles in a protograph can be eliminated if their permutation
shifts are non-zero after lifting. Therefore, the first task
of lifting is the enumeration of short cycles. We design a

cycle enumeration algorithm based on tree expansion' .
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The algorithm traverses all the edges in the Tanner graph
and finds the cycles consisting of each edge. Let I'(v;)
denote the check nodes that are incidental to v;. There-
fore, if we want to search for cycles of length A consis-
ting of edge {i, j}, the problem equals finding paths of
length A -2 from c, to other check nodes in I'(v;) and in
each of these paths all the nodes are distinct and v; is not
contained. The basic idea of the algorithm is to expand a
tree from a root node, ¢, for example. Symbol P(n,) re-
presents the set of valid paths from root to node n,. At
each level of the tree, we only need to expand the tree
from the active nodes and whether a node n, is active de-
pends on whether its P(n,) is updated at the level. Sym-
bol d,(n,, n,) denotes the minimum distance between
node n, and n, in the original Tanner graph. The pseud-
ocode is given in Algorithm 1.

Algorithm 1 Enumeration of cycles shorter than A

1) Res«—J//This set stores all the cycles found
2) Calculate d,,(n;, n,) for each pair of nodes
for each variable node v; in the Tanner graph do
1) I'(v;)«{all the check nodes connected to v;}
2) Remove v; from the Tanner graph
for each check node c; in I'(v;) do
for each node n; in the graph do
P(n)
end
P(c;) ={(¢;)}, AN«<{c;}, nAN«—
//AN is the set of the active nodes of the last level
//And nAN is that of the current level
while | AN | # 0
for each node n, in AN do
I'(n) <« {all the nodes connected to n, }
for each node n, in I'(n;) do
1) P(n;) \n,«{the paths in P(n;) which do not pass n,}
2) Append n, to each path in P(n;) \n,
3) (P(ny) \n,) \P(n,)<—{paths in P(n;) \n, and shorter than A
-d,(n,, v;) =1 but not in P(n,)}
if | (P(n)\n)\P(n,) | #0
1) P(n,)«(P(ny)\n,)\P(n,) UP(n,)
2) nAN«nANU {n,}
end
end
AN<«nAN, nAN<«—J
end
for each check node ¢, in I'(v;) that s >i do
1) Add v; to each path in P(c,) as start and end
2) Res«—ResUP(c,)
end
end
end

2 Elimination of Cycles

2.1 Assignment of permutation shifts

We prescribe that the lifting factor e should be a power of
2. In this case, the lifted codes can be encoded efficiently,
which will be shown in the next section. According to Theo-
rem 1, we can eliminate short cycles by assigning proper

permutation shifts. The deterministic edge swapping
(DES) " algorithm is proposed to search for the good assign-
ment of permutation shifts. However, in the following
greedy algorithm, we add more constraints in the assignment
of permutation shifts to achieve better performance.

Suppose that there are u non-zero permutation subma-
trices in H, corresponding to the u 1s in H. The permuta-
tion shifts of these submatrices are denoted by s,, s,, ...,
s,. Therefore, the permutation shift of a length A cycle
can be calculated as

A

s, = 2 (-1)'s,mod e =6'a (D

i=1
where w;, is the index of the submatrix which corresponds

v 8] T is
called the coefficient vector of the path where g, =( - D'

to the i-th edge of the cycle; 6 =[g,, &,

and others are Os; a=1[s,,s,, ..., 5,1 T is called the per-
mutation vector.
The assignment of permutation shifts is converted to the

problem of a matrix equation,
Ma =4 (2)

where each row in M is the transposition of coefficient
vector of a short cycle that we want to eliminate. Notice
that the matrix operation here is over the ring of Z, = {0,
1, 2, ..., e—1}, where the addition and multiplication
are both modulo e operations, and — 1 in M can be re-
placed by e — 1 equivalently. The problem is to find an «
to reduce as many Os in B as possible.

By elementary column operations, matrix M can be
transformed to a lower triangular matrix L,

MT =L (3)

However, not all the elementary operations can be exe-
cuted. There are zero divisors in Z,, namely 2" where r =
1, 2, ..., g—1, and the multiplication of a column by a
zero divisor is not invertible. Suppose that the dimension
of M is N, X u, and let i«1, j«1, L«M. The steps of
the Gaussian elimination are as follows:

1) Find the first entry in row i whose column index is
greater than or equal to j and which is not a zero divisor.
If all the entries’ column indices are less than j, let i«—i +
1, and repeat step 1). If the entries are all zero divisors,
go to step 3).

2) If the element found in step 1) is in column j" and j'
#J, switch column j° with column j. Eliminate all the
non-zero elements in row i by adding the multiples of col-
umn j to the corresponding columns. This is feasible
since the element at (i, j) is a non-zero divisor. Then let
i—i+1, j—j+1. Ifi >N, orj>u, end. Otherwise, go
to step 1).

3) Since all the non-zero entries in row i whose column
indices are greater than or equal to j are zero divisors of e
=2 one of them will be a divisor of their GCD over
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ring Z,. If this element is in column j' and j'#j, switch
column j’ with column j. Eliminate all the non-zero en-
tries in row i whose column indices are greater than j by
adding the multiples of column j to the corresponding col-
umns. Then let i«—i +1, je—j+1. If i >N, orj>u, end.
Otherwise, go to step 1).

An approximate lower triangular matrix L = [7, ;] can
be obtained. Let e =[¢g,, &,, ..., gu]T and B8 =[8,, B,,
ﬂNP]T
ing that 7 i is non-zero, we call row i a constraint row of

J
&g, and Z 7., &, =[B; is the constraint equation of &;.

J'=1

. If j is the greatest index in row i of L satisfy-

For a constraint equation of g;, where 7, , =2"v and v is
an odd integer, it may exclude 2" possible permutation

shifts that g; can choose at most. The number of these
q-1

constraint equations is expressed by Ne, and if z 2" Ne,
r=0

> e, there will not necessarily be a permutation shift of
&, satisfying all its constraint rows. Also, &; in such case
is over constrained.

J

Suppose that 2 T,;€, = [3;1s a constraint equation of
j=1

an over constrained g;. If [, is the greatest index satisfying

1) [, <jand2) 7,, is non-zero, g,is called the leading el-
ement of the constraint equation. Suppose that g,, s=1,
2, ..., N,, are all the over constrained elements, each of
which has at least one constraint equation of the leading
element ¢,. When assigning the permutation shift of &,,

we consider its own constraint equations as well as the o-
ver constraint equations of g;. The set of permutation
shifts which can satisfy the most constraint equations of ¢,
is denoted by A,, and the set of permutation shifts of &;
excluded by constraint equations with leading elements’
indices less than or equal to [/ is denoted by ¥(j , [).
Since we assign the permutation shifts of ¢ sequentially,
we first calculate Y(j,, [-1). Then we calculate the set
P(j,, 1) corresponding to each value in A, and choose the
one which can minimize

N,

> lyG, D - lgG, 1-1) ]

s=1

(4)

2.2 Simulation

The base code here is a regular code of length 50 and
code rate 0. 5 whose variable node degree is 3 and check
node degree is 6. The base code is constructed randomly
by the PEG algorithm'”'. We try lifting factors of 8, 16
and 32, and use both DES and the proposed method to
assign the permutation shifts. We aim at eliminating cy-
cles shorter than 10. For comparison, ordinary LDPC
codes are also constructed by the PEG algorithm. The
distribution of cycles shorter than 10 is listed in Tab. 1.

Fig. 1 displays the bit error rate ( BER) performance
of the above codes over AWGN channel. The decoding
algorithm used is sum product'"’ with 30 times iteration.
The simulation results reveal that when the code length is

Tab.1 Cycle distribution of regular codes

DES Proposed method Randomly constructed
Cycle length Base code
e=38 e=16 e=32 e=38 e=16 e=32 n =400 n =800 n=1 600
0 0 0 0 0 0 0 0 0 0
204 0 0 0 0 0 0 0 0 0
8 1 438 1 600 768 544 1 088 304 0 1 267 334 0

relatively short, the three types of codes have very similar
BER performances. However, when the lifting factor be-
comes greater, even though the three codes have similar

10—1 =

10721

/@ | —A— PEG(n =400)
—— DES(e=8)
"—©— Proposed (e =8)
—O— PEG(n =800)
L —+— DES(e=16)
—H&— Proposed(e =16)
| —— PEG(n =1 600)
—+—DES(e=32)
—— ll)roposed(le =32) |
1.4 1.8 2.2
SNR/dB

103

10-¢

107

1—8
0 1.0

Fig.1 BER performance of regular codes over AWGN channel

performances in high BER regions, the lifted QC-LDPC
code constructed by the proposed method outperforms the
ones constructed by DES and ordinary ones in low BER re-
gions. Their BER performances accord with their cycle dis-
tributions: the fewer the short cycles, the lower the BERs.
This substantiates the effectiveness of the proposed method.

Then, we consider the case of irregular codes. The
base code is an irregular code of length 100 and code rate
0.5, which is constructed by PEG. Its variable and check
node degree distribution functions are

A(x) =0.204x +0. 509x +0. 037x" +0. 086x° +

0.025x" +0. 139x*
p(x) =0.537x° +0.389x° +0. 074’

Lifting factor e =32. We aim at eliminating cycles in-
cluding 1) All the cycles shorter than 8, 2) The cycles of
length 8 whose ACEs <16, and 3) The cycles of length
10 whose ACEs <8. The cycle distribution is listed in
Tab.2. The proposed method has fewer cycles of interest
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than DES. Fig. 2 displays the BER performance. For
comparison, an irregular code of length 3 200 with the
same degree distribution is also constructed randomly.
We can see that the code constructed by the proposed
method decreases the error floor from 10~ to 10 ~°.

10°
10!
102

103

—%— PEG(n=3200)

—— DES(e=32)

—5— Proposed (e =32)
1

1081

10-°
0.2

1.8

1
1.4
SNR/dB

1
0.6 1.0

Fig.2 BER performance of irregular codes over AWGN channel
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where H is the parity check matrix of the base code, and

all the matrices are defined over GF(2). Here, (l)
J

i!
JHGi=-n!
Proof

mod 2.

M, d=0,1, ..., e-1, and their summations

Tab.2 Cycle distribution of irregular codes

Cycle length Base code DES Proposed method
4 0 0 0
6 881 0 0

8 (ACE<16) 6 259 8 608 5 600

10 (ACE<8) 2 235 0 0

3 Efficient Encoding of QC-LDPC Codes

H can be transformed into a block cyclic matrix H'by
row and column permutations'”', which is

HO Hefl Hl
1 0 2

m-| %" " (5)
e a a

where H? = (h fj) is an m x n submatrix, and A f’j is the
entry at the position (d +1, 1) of submatrix H, ..

Theorem 2 For a lifted QC-LDPC code, where the
lifting factor e =27, H' can be transformed into a lower
block-triangular matrix A by proper elementary row and
column operations, that is

(6)

are expressed by polynomials over GF(2), where x‘ de-

e-1 e-l1
d
SO z X
d=0
27-1

notes H¢. It is clear that » H? = H",

d =0
Y x' =(1 +x)°"" = H. By induction, it can be proved
d=0

that after e — 1 times transformation, A =R, ,...R,R H'
C.C,...C, . In the first transformation, row blocks 2,
3, ..., e are added to the row block 1,
blocks e -1, e -2,

then column
..., 1 are added to column blocks e,

e—-1, ..., 2 in sequence, where
H
1 1 0 3 2
X X +Xx X +x
H = X o+ x XX
X7 o e X +x
IVV'I IVll Im Im I)l I)l
I, I, 1,
R1 = Im B Cl = n
In
I 1



Efficient construction and encoding of QC-LDPC codes by cyclic lifting of protographs 29

Assume that after ¢ times transformation, the matrix is

r H
X(1+x)°7 H
X1 +x°° X (1+x)°7 H
H =
(0 xt—l(1+x)e—1 xzfz(l +x)e+]—t x173(1 +x)e+2—t
X X1 +x) X731 +x)°
X X(1+x) X7 +x)°
L X! X721 +x) X721 +x)°
e—1 e-1-t _] _
Since (X _ () 4 et 2 (e l)xk,
(1+x) — k
row blocks t +2, t+3, ..., e are added to row block ¢ +
-1-t -1-t -1-t
1 by coefficients(e | ) (e ) ) (:—1—t)

and column blocks e — 1, e -2, ..., t+1 are added to
column blocks e, e -1, ..., t+2 in sequence. The resul-
ting H',,,, conforms to our assumption. Then after e — 1
times transformation, we have A =R, ,...R,R H'C,C,...
C, ,, whereR=R, ..R,R and C=C,C,...C, . In
addition, matrix A is block-Toeplitz. This completes the
proof.

Codeword ¢ = [cﬂ”, c(f’, e c(lc), c;”, oo cL”]T can be
permuted to ¢’ = [c}"”, ¢, ..., c", P, .,
which satisfies H'¢' =0. Lety =C '¢’ =[y\", »", ...,
y Ly v L y91T, which satisfies Ay =0. Then sub-
code y =[y\”, y\”, ..., "1 can be viewed as a base
code and the encoding of lifted QC-LDPC code is decom-
posed into the encoding of base codes.

The encoding of each subcode has two steps: 1) The

()T
’l(]

l

multiplication of each row block by the previous encoded
bits, and 2) The encoding of base code. If the permuta-
tion shifts are uniformly distributed over Z,, the expecta-

tion of the number of 1s in matrix 2 (e B l)?-l”“ *is
k=0

N,.(D)

x nw, where w is the average column weight and

N, (i) is the number of non-zero elements in the set

{(7F) I keto e Mauix S (€7 e

be expressed in the polynomial form as x'~'(1 +x)', so
let a,_, denote the number of non-zero coefficients in (1
It can be derived that the numbers of XOR oper-

e-l1

ations sum to 2 (i +1)a,nw/e =0(3"n) in step 1). For

i=0

+x)°70

the second step, we follow the encoding method in Ref.
[12],
the gap of the approximate triangulation of the base ma-

and its complexity is O(n) + O(g’), where g is

trix. Since y has to be left multiplied by matrix C, there
is an additional complexity of O(neq) .

H

X (1+x)"" (1+x)' X7 +x) X1 +x)"

X(1+x)"" x(1+x) (1+x) X (1 +x)"

X1+ T+ XA+ (1+x)"
(9

In this encoding scheme, we only need to preprocess
the parity check matrix of the base code, which has a
complexity of O(g’)!".
LDPC code as an ordinary one, the complexity of prepro-
cessing becomes O(g’¢’), and it accounts for much more

However, if we treat the QC-

memories to store the resulting matrix.
4 Conclusion

This paper provides an integrated process of construc-
ting QC-LDPC codes by the cyclic lifting of protographs.
The cycle enumeration algorithm can find target cycles ef-
ficiently and simulations demonstrate that the proposed
greedy algorithm can eliminate more short cycles than the
DES algorithm in the assignment of permutation shifts.
Additionally, the encoding method introduced greatly re-
duces the complexity of preprocessing in encoding.
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