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Abstract: The optimized color space is searched by using the
wavelet scattering network in the KTH _ TIPS _ COL color
image database for image texture classification. The effect of
choosing the color space on the classification accuracy is
investigated by converting red green blue (RGB) color space
The results show that the
classification performance generally changes to a large degree
when performing color texture classification in various color

to various other color spaces.

spaces, and the opponent RGB-based wavelet scattering

network outperforms other color spaces-based wavelet

scattering networks. Considering that color spaces can be
changed into each other, therefore, when dealing with the
problem of color texture classification, converting other color
spaces to the opponent RGB color space is recommended
before performing the wavelet scattering network.
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exture plays an important role in many image analy-
T sis techniques such as image segmentation, image
retrieval, and image classification. Due to its impor-
tance, texture feature description has attracted much at-
tention in the past decades. Lowe'" proposed a famous
data-dependent local feature descriptor, namely, scale-in-
variant feature transform ( SIFT), which computes the lo-
cal sum of image gradient amplitudes among image gradi-
ents having nearly the same direction in a histogram with

eight different direction bins. Tola et al. "' proposed a da-
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ta-independent descriptor, known as DAISY, to approxi-
mate SIFT coefficients by S[A,]x = \ Xk, \ * @, (U),
where i, are partial derivatives of a Gaussian computed
at the finest image scale, along eight different rotations.
The averaging filter ¢,. is a scaled Gaussian. Mallat et
al. ®™ proposed a new data-independent feature descrip-
tor, that is, the wavelet scattering network ( ScatNet). It
can be seen as a multilayer version of DAISY, which
substitutes the partial derivatives of a Gaussian by com-
plex wavelets. Note that the above descriptors are mainly
proposed for grey-scale images.

As we know, color provides useful information for im-

[5-7]

age classification and object recognition For exam-

5 .
1. ™ evaluated various color de-

ple, Van de Sande et a
scriptors for object and scene recognition and concluded
that the opponent SIFT is recommended when a single de-
scriptor is chosen and no prior knowledge about the data
set and object and scene categories is available. Zhang et
al. ' further extended the idea of the opponent SIFT to
double opponent SIFT, which took red-cyan (R-C) chan-
nel into consideration. " extended the
grey-scale ScatNet descriptor to color one; however, they
only considered the YUV color space.

In this paper, we will consider wavelet scattering net-

Oyallon et al.

works in various color spaces, and try to find the best
color spaces for the utilization of wavelet scattering net-
works.

1 Color Spaces

Tab. 1 lists the color spaces considered in this paper.
The conversions of some color spaces are shown as
follows:

1) Converting RGB to YCbCr

Y 65.481  128.553  24.966 1r R 16
Cb =256[ -37.797 -74.203 112.0 || G|+ 128] (1)
Cr 1120 -93.78 -18.214ll Bl 1128
2) Converting RGB to I,L1,
1, 173 1/3  1/3 ;R
I, =[ 72 0 —1/2“0] (2)
I, -1/4 172 -1/4ilB
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3) Converting RGB to CIE XYZ

4) Converting RGB to HSL

R _ G, B
"R+G+B S R+G+B ""R+G+B

a=max(r,g,b), B=min(r,g,b)

L=(a+B)/2
0 L=0ora=8
a-B_a-p L
S=la+B” 2L O<l<;
a-B _o-f 1
P—(a+p) 2-20  E7%
0° a=p
60° x =2 10° a=rand g=b
a
o g o _
He 60 ,3+36O a=rand g<b
b-r
60° x +120° a=g
60° x -—5 4 240° a=b
a-pB

5) Converting RGB to opponent RGB"

0,7 T2z -112 0 7.R
[012] /6 16 -2//6 [G]

Od Lz 113 113 "B

6) Converting RGB to double opponent RGB!

0,7 T[22 =142 0
Oy, | |2//6 -1//6 -1//6 [ G]
Oy e 146 -2//6

Od Ly 1B 143

RGB color images

Images of various
other color spaces

X 0.49 0.31 0.20,.R
Y [0 177 0.812 0. 011”G] 3)
[Z 017 0.00 0.01 0.9

(4)

(5)

For more information about color spaces, we refer to
Refs. [8 —9].

2 Wavelet Scattering Network

The complex band-pass filter i, is constructed by scaling

a mother filter ¢ by 2’ and then rotating the filter ¢ by 6,
that is,

g, (x) =2"p(297'x) A =20 (7

with 0<j<J/ -1, and 6 =kn/K, k=0,1,...,K-1.
The wavelet-modulus coefficients of f(x) are given by

ULAIAX) = | fri, (0) | (®)

The scattering propagator U[p] is defined by cascading
wavelet-modulus operatorsm s

UlpIf(x) =ULA,]...ULA,1ULAIf(x) =
g, | g, |y, ()] 9)

where p = (A, A,, ..., A,,) are the frequency-decreasing
paths, thatis, |A, | =|A,,, |, k=1,2,....,m-1.

Scattering operator S, performs a spatial averaging in a do-
main whose width is proportional to 2’.

PIf(x) = Ulplf* ¢,(x) =
Nfseg, [ =g, [ oog, ()| *,(x)
(10)

The wavelet scattering network is shown in Fig. 1.

The network nodes of the layer m correspond to the set
P" of all paths p = (A, A,, ..., A,,) of length m. This
m-th layer stores the propagated signals { U[ p] f(x) }
and outputs the scattering coefficients {S,[ p]f(x) },_p-
The output is obtained by cascading the scattering coef-
ficients of every layer. We apply the wavelet scattering
network to each channel of color images, and then cas-
cade the scattering coefficients of each channel to form
the final outputs.

peP"

® S;[dlf=f*d,

O o UlAlf= |f*¢)\1|
L/ L SJ[/\I]lef*’/‘)n|*¢J

000000 000000 000000 000000 000000 000000 U[)Ll,)tz]f=||f*¢/\l|*|p/\2|

O Intermediate result ® Output

Fig.1 Three-layer wavelet scattering network
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3 Numerical Experiment

In this section, the wavelet scattering network is per-
formed in various color spaces in the KTH_TIPS_COL
database'”, which contains in total 81 color images and

is divided into 10 classes. Some examples are shown in
Fig.2.

(6]
Fig.2 Some color image examples of KTH_TIPS_COL data-
base( Color image size is 200 x 200 x 3 pixels). (a) Aluminium
foil; (b) Brown bread; (c) Corduroy; (d) Cotton; (e) Cracker; (f)
Linen; (g) Orange peel; (h) Sandpaper; (i) Sponge; (j) Styrofoam

3.1 Preprocessing

We transfer all the color images in the KTH_ TIPS _
COL database from RGB space to various other color
spaces as shown in Tab. 1.

3.2 Dividing

The total images of the KTH_TIPS_COL database are
randomly divided into two parts, training data and testing
data. In our experiment, 41 images are randomly chosen
for training and the remaining 40 images for testing in
each class. Therefore, we have 410 training images and
400 testing image in total.

3.3 Initialization

The parameters of the wavelet scattering network are

Tab.1 Various color spaces and their brief descriptions ( six
categories)

Color spaces Descriptions

RGB

YUV, YIQ, YPbPr, YCbCr,
JPEG-YCbCr, YDbDr

Red, green, blue

Luminance, chrominance

HSV. HSL. HSI .Hue, .saturation, value/lightness/
ntensity

I, L1, Linear transform of RGB
CIE XYZ, CIE LUV,
CIE LCH, CIE LAB,

CIE UVW, CATO02 LMS

Opponent RGB'®!
Double opponent RGB!*!

Tristimuli, chromaticity, and col-
orimetric systems

Opponent theory

initialized. We construct a three-layer scattering network
by complex Gabor wavelets, whose finest scale is 2’ =16
and the total number of angles is K = 8. The oversam-
pling factor is set to 2' =2. The corresponding scaling
function covering the low frequency bands is a Gaussian
function.

3.4 Inputting training data to network

We put every image in the training set into the wavelet
scattering network, which is shown in Fig. 1, and obtain
the training characteristic matrix Q,, each column of
which stores a scattering vector corresponding to one im-
age.

The number of columns of the matrix corresponds to
the number of training images. Each channel of color im-
age is computed separately and their scattering coefficients
are concatenated. For each channel of color image with
size 200 x 200, a scattering vector of 417 dimensions is
obtained. Therefore, for 410 training color images with
three channels, we obtain a training characteristic matrix
0, of size 1 251 x410.

The image “brown bread” (see Fig.2(b)) is taken as
an example. Figs.3(a) to (c) shows the first, second,
and third layer scattering coefficients of the R-channel im-
age of “brown bread”, respectively. Note that we use the
Matlab package “scatnet-0.2”, which is available on the

website''"!.

3.5 Inputting testing data to the network

We put every image in the testing set into the wavelet
scattering network (see Fig. 1), and obtain the testing
characteristic matrix @Q,. Similar to Section 3.4, for 400
testing images, the testing characteristic matrix Q, of size
1 251 x400 is obtained.

3.6 Concatenating

The matrices O, and Q, are concatenated to obtain the
scattering characteristic matrix Q@ =[Q,, Q,], whose size
is 2 151 x 810, which represents the characteristics of the
KTH_TIPS_COL database.
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Fig.3 Scattering coefficients of R-channel of “brown bread”.
(a) First layer scattering coefficients; (b) Second layer scattering coeffi-

cients; (c) Third layer scattering coefficients

3.7 Classification

We put matrix Q into the linear principal component
analysis (PCA) classifier,
principal component, and obtain the classification results,
which are shown in Tab. 2. The classification results are
averaged over 10 different random splits. From Tab.2, we
can see that the opponent-based color descriptors ( oppo-
nent RGB and double opponent RGB) are superior to those
of other color spaces, since opponent-based color descrip-
tors are inspired by the opponent process theory'” of hu-
man color vision. The intensity information is represented
by channel O,; and the color information by O,, and O,, in
Eq. (5). Luminance-chrominance color spaces ( YUV,
YIQ, YPbPr, YCbCr, JPEG-YCbCr, YDbDr), CIE color
systems ( XYZ, LUV, LCH, LAB, CAT02 LMS) and
Note that
color spaces are separated into a luminance channel and
chrominance channel, which are then separately processed,
generally achieving a similar classification rate of color
texture. Hue-saturation color spaces (HSV, HSL, HSI) a-
chieve the worst classification accuracy. It seems that the
color spaces with linear transforms of RGB are better than
those of nonlinear transforms of RGB when dealing with
color image texture classification.

choose the dimensions of the

I,L I, achieve similar classification accuracies.

4 Conclusion

In this paper, we give a comparison study of wavelet
scattering networks in various color spaces for color
textureclassification in the KTH _TIPS _ COL database.
Opponent-based color descriptors are superior to those of
other color spaces. Therefore, when a single descriptor is
chosen and no prior knowledge about the data set is avail-
able,
recommended and hue-saturation-based color

(HSV, HSL, HSI) are not recommended.

the opponent RGB wavelet scattering network is
spaces

Tab.2 Classification accuracies of the wavelet scattering network in various color spaces in the KTH_TIPS_COL'"” database %

Dimensions
Color spaces
5 10 15 20 25 30 35 40 45 50
RGB 92.98 97.58 97.85 98.55 99.08 98.73 98.93 98.17 98.65 98.55
YUV 91.95 97.3 98.05 98.55 98.78 98.65 98.63 98.48 98.63 98.17
YIQ 93.05 97.65 97.65 98.53 98.38 98.55 98.68 98.33 98.68 98.38
YPbPr 92.87 97.45 97.88 98.30 98. 68 98.43 98.40 98.75 98.55 98.53
YCbCr 92.48 97.47 98.08 98.48 98. 60 98.50 98.53 98.73 98.53 98.88
JPEG-YCbCr 92.28 96. 80 97.75 98.45 98.43 98. 60 98.55 98.22 98.95 98.45
YDbDr 91.62 97.23 98.15 98.53 98.28 98.28 98.48 98.75 98. 60 98.78
HSV 85.42 91.55 95.40 95.50 96. 10 96.78 96.00 96.15 95.25 96.22
HSL 84.62 91.85 94.15 95.82 96.43 96. 60 96.55 96.15 96.15 96.12
HSI 83.68 90.97 96.12 95.82 96.55 96.50 96.00 96.32 95.70 96.05
I, 1,15 92.98 97.25 97.98 98.45 98.30 98.75 98.48 98.28 98.43 98.13
CIE XYZ 93.83 97.60 98.00 98.25 98.15 98.55 98.73 98.68 98.65 98. 65
CIE LUV 92.43 96. 80 97.68 98.20 98.73 98.78 98.43 98.93 98. 60 98.53
CIE LCH 92.70 97.05 97.70 98.45 98.53 98.23 98.43 98.93 98.70 98.75
CIE LAB 92.88 97.45 98.33 98. 65 98.43 98.58 98.73 98.50 99.00 98.48
CATO02 LMS 93.50 97.20 97.82 98.53 98.83 98.78 98.88 98.35 98.48 98. 80
Opponent RGB 94.55 98.93 98.95 99.28 99.53 99.33 99.38 99.00 99.43 99.38
Double opponent RGB 94.00 98.70 99.18 99.33 99.40 99. 60 99.35 99.35 99.45 99.45
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