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Abstract: An adaptive topology learning approach is proposed
to learn the topology of a practical camera network in an
unsupervised way. The nodes are modeled by the Gaussian
mixture model. The connectivity between nodes is judged by
their cross-correlation function, which is also used to calculate
their transition time distribution. The mutual information of
the connected node pair is employed for transition probability
calculation. A false link eliminating approach is proposed,
along with a topology updating strategy to improve the learned
topology. A real monitoring system with five disjoint cameras
is built for experiments. Comparative results with traditional
methods show that the proposed method is more accurate in
topology learning and is more robust to environmental changes.
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‘ x J ide range monitoring with a camera network is a

useful method for addressing the safety issue.
However, covering all areas with cameras is not realistic
and necessary. A multi-camera monitoring network is al-
ways built by covering key areas with cameras and leav-
ing general areas un-covered. Thus, the camera network
topology, including connectivity and transition time, is
significant for continuous tracking across a camera net-
work with non-overlapping views.

There are mainly two approaches for topology learn-
ing, including a supervised approach and an un-super-
vised one. The former learns the topology by tracking la-
beled objects during a training stage, such as the Parzen
window topology learning approach proposed by Javed et
al'" . However, the need for mass labeled data and the
sensitivity to environmental changes make this approach
unsuitable for realistic applications. The latter learns the
topology adaptively with unlabeled data. The cross-corre-
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lation function (CCF) "' is employed to calculate the con-
nectivity between the nodes of different camera views. To
improve its accuracy in connectivity inferring, color in-
formation is introduced into the traditional CCF by Niu et
al'’. Face detection” is employed to improve the color-
based CCF used on humans. The latter can precisely infer
the connectivity if the identities of tracked people are rec-
ognized. However, face detection is difficult to popularize
due to its requirements for imaging angle and precision.

A camera network topology learning approach is pro-
posed in an un-supervised way. It is represented by a
graph model G = (V,E, W) "', The set of nodes is repre-
sented by V = {v,|, where v, indicates the i-th entering/
leaving location. The set of edges is represented by E =
{e;!, where e, indicates the connectivity between nodes
v, and v,. The set of weights is represented by W= {w, |,
where w, indicates the transition probability of e,. A false
link eliminating approach is proposed to improve the
learned topology and an update strategy is employed to
ensure the robustness of the learned topology to environ-
mental changes.

1 Joint Appearance Similarity

1.1 Color similarity

Color feature is commonly used for matching. Major
color'” is employed due to its robustness to affine trans-
formation. A patch-based strategy is employed to calcu-
late the color similarity P, which is defined as

Pc = aPhead +BPbody + ’yPlegs (1)

heat s Progy @and P are color similarities of the
head, the body and the legs, respectively; «, 8 and vy are
the corresponding weights («, 8 and y are set to be 0.2,

0.4 and 0.4, respectively. ).

where P

1.2 Textural similarity

Texture feature is always used as detailed information.
The histogram of gradient (HOG)"*' is employed as tex-
ture feature due to its superiority in human representation.
Supposed that O, ; and O, ; are two observations detected
in v, and v,, the textural similarity P, is defined as u

kH()U
-3

Ha.i(u)Hb,_/(u) (2)

P, = exp| — pn
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where H, ; and H, ; are the HOG descriptors of O, and
Ob,_/’ ’
is the dimension of HOG descriptor.

respectively; o, is a pre-defined bandwidth and k.

1.3 Saliency similarity

The saliency feature proposed by Zhao et al. ' can be
used to acquire identity information instead of face detec-
tion. Adjacency constrained patch matching is employed
to build dense correspondence between image pairs,
which shows effectiveness in handling misalignment
caused by large viewpoint and pose variations. Human
saliency is then extracted automatically by the k-nearest-
neighbor algorithm. Finally, the saliency similarity P, of
two observations is calculated by a bi-directional weigh-
ting approach as proposed by Zhao et al”’.

1.4 Joint appearance similarity

The joint appearance similarity is calculated based on
color similarity P_, textural similarity P, and saliency
similarity P.. If O, = O,, which indicates that observa-
tions O, ; and O, ; belong to the same object, the joint ap-

pearance similarity P, (O, ,,0, ;) can be defined as

a,i”

P,(0,,,0,,) =P(0,,,0,,10,=0,) =P_PP (3)

a,i” a,i”

2 Learning Camera Network Topology
2.1 Learning topology nodes

The set of nodes V = {v,} is learned based on the re-
sults of single camera tracking. In each view, the entry/
exit zones are modeled as a Gaussian mixture model
(GMM) with parameters Z = {z,A_,u.,0. |. For each
GMM, 7z indicates the number of Gaussian distributions
and A, represents the weight of the z-th Gaussian distribu-
tion. u, and o’ represent the mean and variance of the
z-th Gaussian distribution. z is automatically determined
according to the Bayesian information criterion ( BIC).
Other parameters {A_,u.,o,’ | can be estimated by the
expectation maximization (EM) algorithm.

2.2 Learning topology edges

The set of edges E = {e,| is learned based on the
CCF, which is used for connectivity inferring. For two
nodes from different camera views, a prominent single
peak of their CCF curve indicates that they are connected.
The traditional CCF of v, and v, can be defined as

R, (T) =EIX,(D)Y,(t+T)} = 2 IX() [ Y. (t+1)|
(4)

where the departure events of v, and arrival events of v, at
time ¢ are represented as X;(¢) and Y,(t), respectively.
To improve the traditional CCF, joint appearance similar-
ity is used to build a new CCF, which is defined as

t=o

sz(T> = Z Z Pa(Oa,i7Oh,j>
t=-20,,eX(1)0,;eY,(1+T)
s.t. P,(0,,,0,,) >8 (5)
where P (O, ;,0, ) is added into the CCF if and only if

it is greater than a given threshold §, which is employed
to guarantee the high correlation in CCF.

Two nodes are connected if and only if the peak value of
R, (1) is greater than a threshold T, , which is defined as

T,=mean(R;(T)) +wstd(R,(T)) (6)

where w is an user-defined parameter.

The transition time distribution ( TTD) between two
connected nodes is acquired by normalizing their CCF. A
TTD can be built as a Gaussian model whose parameters
are learned by the EM algorithm.

P, (T)=R (T)/|R,(T) | ~N(u,a*) (7)

2.3 Learning topology weights

The set of weights W= {w,| is learned based on the
mutual information ( MI )"’ between two connected
nodes v, and v,. Letting X,(¢) and Y,(¢+T) be two tem-
poral sequences from v, and v;, their mutual information

I(X,Y) is defined as

_ p(X.Y) _
I(X.,Y) = fp(x,y)logp(x)p(y)dXdY_
_Llogz(l _p;y) (8)

2

where p;y represents the correlation coefficient, which
can be estimated as

2 _R[,j<Tpeak) _mean(R[,j(T>)
Pxr = (X,(0) (Y, (1+ 7))

(9)

where Tp
T

peak *

indicates a clear peak in R, ;(T) at time T =

eak

2.4 False link elimination

The learned topology can be represented as a link ma-
trix or topological graph, as shown in Tabs. 1 and 2. For
a link matrix, the value of row m column n denotes the
transition probability from v, to v,. For a more intuitional
topological graph, connectivity between different nodes

Tab.1 Learned topology with “false link”
Node

Zone Node

1 2 3 4 5 6 7
1 0 0 1 0 0.53 0.31 0
Zone 1
2 0 0 0 0.92 0.49 0 0.23
3 0 0 0 0 0 0.47 0
Zone 2 4 0 0 0 0 0 0 0.41
5 0 0 0 0 0 0.62 0.55
6 0 0 0 0 0 0 0
Zone 3
7 0 0 0 0 0 0 0
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Tab.2 Learned topology without “false links”

Node
Zone Node
1 2 3 4 5 6 7
1 0 0 1 0 0 0 0
Zone 1
2 0 0 0 0.92 0 0 0.23
3 0 0 0 0 0 0 0
Zone 2 4 0 0 0 0 0 0 0
5 0 0 0 0 0 0.62 0.55
6 0 0 0 0 0 0 0
Zone 3
7 0 0 0 0 0 0 0

is indicated by a solid arrow with its transition probabili-
ty. Connectivity between nodes from the same camera
view is indicated by a dotted arrow which is obtained
from the results of single camera tracking.

However, false links always exist in the learned topolo-
gy. As shown in Fig. 1(a), v, and vy are not connected
without v,. False links should be removed in order to re-
duce ambiguity in object matching across disjoint camera
") For instance, if an object disappears in v, , it
will only reappear in v, rather than v, or v;.

views

Fig.1 Topological graphs of the learned topology. (a) Topolo-
gical graph with a “false link” ; (b) Topological graph without a “false
link”

Mutual information and TTD are utilized to eliminate
false links. Mutual information of definite false links is
less than a low threshold T, (0. 15 in this paper). Mutual
information of probable false links is between a low
threshold T}, and a high threshold T, (0.8 in this paper).
Meanwhile, the probable false links must contain a set of
true sub-links whose mutual information is larger than

T.,. The probable false link is regarded as a definite false
link when its TTD is similar to the TTDs of all its sub-
links. Kullback-Leibler divergence is employed to calcu-
late the similarity between two distributions. Fig.1(b)
demonstrates the improved topology after false link elimi-
nation.

2.5 Update strategy

The topology of practical camera network, including
TTD and transition probability, should be updated to fit
the environmental changes. Let ¢, be the passing time of
the k-th object passing two nodes whose original TTD is
N(w,o) and p be the updating rate. Then, the new pa-
rameters of TTD are defined as

(10)
(11)

The transition probability between two nodes is updated
based on all objects passing them. Letting the updating
rate be k, the new transition probability is defined as

p'=(1-p)u+pt,

0_*2 — (1 _p)a_z +p(M* _tk>2

wy = (1 -k)w, +kP,(T,) (12)

where P, (T, ) is the ratio between the object number
from v, to v; and the object number exiting from v, at time
segment T, .

3 Experimental Analysis
3.1 Experimental environment

Fig. 2 shows a camera network which contains five
cameras with non-overlapping views. Each camera is
hung on the ceiling of different places and looks down at

no specific angle. Lighting conditions in different places

Fig.2 The camera network used in the experiments
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are similar to ensure the robustness of appearance similari-
ty. Data is continuously acquired from 8:00 to 12.00.
CamsShift'™’ is employed as the single camera tracking al-
gorithm. Entry/exit nodes are denoted in numbers and

true connectivity is also given by arrows.

3.2 Performances of different CCFs

Figs. 3 to 8 give the comparative results of different
CCFs which are utilized to learn topology edges.
pairs of nodes are used, including three connected pairs
(V,—»V,, V.-V, V,—V, ) and three disconnected ones
(V,—>V,,V,»V,,V,.—V,). Fig.3 shows the power of
our CCF for connectivity inferring due to the prominent
single peak. As shown in Fig. 4, double peaks exist in
the curve of Fig.4(c) due to the ambiguity

of the color-

based CCF. Peaks are obscure in all curves of Fig.5 be-
cause no appearance information is added into the tradi-
tional CCF. Figs. 6 to 8 show the curves of disconnected
node pairs. Compared to the traditional CCF and the col-
or-based CCF, our CCF can restrain curve peaks of dis-
connected nodes and then reduce the probability of learn-
ing a wrong connectivity. Thus, topology edges learned
by our CCFs are more accurate than those by the other
Six  two commonly used CCFs.

3.3 Experiments of topology learning

The topology of camera network as shown in Fig. 2 is
learned using the proposed algorithm. Fig. 9 shows the
learned topology without false links elimination and Fig.
10 shows the learned topology after false link elimination.
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Fig.10 Learned topology with false link elimination

As a result, the topology learned by our approach can of-
fer more useful spatio-temporal information than the com-
monly learned topology.

4 Conclusion

An un-supervised camera network topology learning
approach is proposed in this paper. Joint appearance simi-
larity is employed to improve the traditional CCF in edges
learning. A false link elimination strategy is proposed to

optimize the learned topology. An update strategy is also
used due to environmental changes. Comparative experi-
ments in a practical camera network with disjoint views
indicate that our approach can learn a more precise topol-
ogy which is also robust to environmental changes.
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