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Abstract: A solution is proposed for the real-time vehicle
verification which is an important problem for numerous on-
road vehicle applications. First, based on the vertical
of vehicle

symmetry characteristics a vertical

symmetrical histograms of oriented gradients ( VS-HOG)

images,

descriptor is proposed for extracting the image features. In the
classification stage, an extreme learning machine (ELM) is
used to improve the real-time performance. Experimental data
demonstrate that, compared with other classical methods, the
vehicle verification algorithm based on VS-HOG and ELM
achieves a better trade-off between cost and performance. The
computational cost is reduced by using the algorithm, while
keeping the performance loss as low as possible. Furthermore,
experimental results further show that the proposed vehicle
verification method is suitable for on-road vehicle applications
due to its better performance both in efficiency and accuracy.
Key words: histogram of oriented gradients (HOG); vertical
symmetrical histogram of oriented gradients ( VS-HOG);
vehicle verification; extreme learning machine (ELM)
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ision-based vehicle detection systems play important
V roles in many applications, such as self-guided ve-
hicles, driver-assistance systems, and automatic parking
systems ', Vision-based vehicle detection systems have
two main challenges:
ance. To obtain high accuracy and achieve real-time pro-
cessing, a typical vehicle detection system often includes
two parts: 1) Hypothesis generation (HG) and 2) Hy-
pothesis verification (HV)™. In the HG step, the loca-
tions of the vehicles in images are hypothesized. In the

accuracy and real-time perform-

HV step, tests are performed to verify the presence of ve-
hicles in an image.

In recent years, more and more researchers have used
classification techniques in the vehicle HV step and have
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achieved impressive results”™ . In their studies, HV is
regarded as a classification problem of distinguishing be-
tween vehicle and non-vehicle data, and then feature de-
scriptors (including vehicle and non-vehicle data) are ex-
tracted from training images to generate classifier parame-
good performance feature descriptors
play very important roles in the effectiveness of the classi-

ters. Therefore,
fier. Popular methods to extract feature descriptors in-
clude Haar-like'"”, Gabor filters'"™', and histograms of
oriented gradients (HOGs)""”'. HOGs are the descriptive
image feature, exhibiting good detection performance in a
variety of computer vision tasks, including vehicle detec-
tion"*™, but they are generally slow to compute. In
Ref. [ 18], by exploiting the a priori known vehicle ap-
pearance, the authors proposed three less-demanding
HOG descriptors, CR-HOG, V-HOG and H-HOG, in or-
der to lighten the computation burden. During the compu-
tation of all the three improved HOG descriptors, the
number of cells is much smaller than that in the traditional
HOG, thus resulting in fewer calculations and a much
smaller feature vector. Furthermore, the authors in Ref.
[18] pointed out that V-HOG is shown to be the most ef-
ficient among these descriptors due to its better capability
for describing the intrinsic gradient content of a vehicle
image. However, when extracting a V-HOG descriptor
from vehicle images, the symmetry features that generally
exist in vehicle images are neglected.

In this paper, using the symmetrical characteristics of
vehicles, an alternative HOG descriptor called vertical
symmetrical histogram of oriented gradients ( VS-HOG)
is presented to achieve higher accuracy and efficiency. In
order to enhance classification speed, an extreme learning
machine (ELM) is used as a two-class classifier to recog-
nize vehicles. Experiments are performed on a large pub-
lic database and verified the proposed method of the per-
formance in the speed and accuracy of vehicle verifica-
tion.

1 VS-HOG Vehicle Descriptor
1.1 HOG and V-HOG descriptor

HOG was proposed by Dalal and Triggs'" for pedestri-
an detection, and it has also been extended to other appli-
cations such as vehicle detection. The calculation of HOG
descriptors include three steps: 1) Gradient computation;
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2) Orientation binning; and 3) Histogram generation.
First, all the gradients of an image are obtained by apply-
ing Sobel or Prewitt operators. Then, the image is divid-
ed into cells according to predefined size in order to accu-
mulate the histogram of orientations. Finally, the range
of each bin should be determined. For example, if the
unsigned gradient is divided into eight bins with the same
range, the range of each bin is /8 (see Fig. 1(b)). In
the histogram generation step, votes are weighted accord-
ing to the gradient magnitude in each cell. Then, the
called
blocks (see Fig. 1(a)), and normalization processing is
carried out locally in each block according to standard
measures, such as the L1 or the L2 norm. The final de-
scriptor comprises the normalized responses from all the
blocks.

cells are grouped into larger spatial structures,
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Fig.1 Illustration of a typical HOG configuration. (a) Example

of HOG grid. (b) Orientation range of each bin for 8-D HOG

HOG descriptors can provide good classification re-
sults,
heavy computation, which greatly decreases the algorithm
efficiency. When using HOG in vehicle detection, the
critical real-time requirements should be satisfied for prac-
tical applications. In Ref. [18], the authors proposed three
cost-effective HOG descriptors, named CR-HOG, V-HOG
and H-HOG. Furthermore, the results of experiments,
which were performed on the GTI vehicle database'”,
shows that the V-HOG descriptor is a better alternative
than the two others for real-time vehicle verification.

The V-HOG descriptor (see Fig. 2) divides an image
window into several vertical stripes. Therefore, the meth-
od needs only two parameters, named the number of orien-
tation bins in the histogram, B, and the number of cells,

but feature extraction and classification require
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Fig.2 The V-HOG descriptors. (a) The V-HOG descriptor with
four vertical cells; (b) A vehicle image divided by four-cell V-HOG

n. Then, the dimension of the feature vector extracted
from vehicle images is 8 x 7. Moreover, these cost-effec-
tive descriptors in cells are not further grouped into
blocks, and local contrast normalization is unnecessary.

1.2 VS-HOG descriptor

The V-HOG descriptor presented in Ref. [ 18] makes
use of the previous knowledge of vehicle appearance.
Based on the previous knowledge of the vehicles, the im-
age window is divided into several vertical stripes instead
of classical HOG grids. However, symmetry, which is a
very important characteristic of the vehicle images, is still
underexploited in the V-HOG method.

Symmetry is one of the most important visual charac-
teristics of vehicles. The rear views of most vehicles are
symmetric over a vertical centerline. The symmetry fea-
ture is often used to extract the symmetric regions in the
image'”
to enhance the description capability of V-HOG.
1.2.1

The symmetry characteristics used in this paper to im-
prove V-HOG descriptors include two categories. One is
cells-symmetry, and the other is bins-symmetry. As we
can see in Fig. 2, the V-HOG divides the image into ver-
tical stripes and the dimension of V-HOG is determined
by the number of cells and the number of orientation bins

. However, in this paper, symmetry is exploited

Cells-symmetry and bins-symmetry

in the histogram. When computing the V-HOG of vehicle
images, symmetry obviously exists between cell-1 and
cell4, which is denoted cells-symmetry. On the other
hand, in the V-HOG computing results of vehicle ima-
ges, the symmetry exists between the orientation bins in
the one cell and those in the other corresponding symmet-
rical cell, namely the bins-symmetry. In fact, when com-
puting the vehicle image gradients, many pixel gradients
with opposite orientation and approximate equivalent
magnitude value can be obtained in the mutually symmet-
ric cells because of the symmetry of the vehicles. Fig. 1
(b) shows the symmetry among the orientation bins cor-
responding to each other, bin, is symmetric with bing,
and bin, is symmetric with bin,, and so on. Thus, these
pixel gradients are used to vote according to the gradient
orientation in each cell. There must be some kinds of
bins-symmetry rules between the mutually symmetric cells
of the vehicle image.

In Fig. 3(a), the bars with a diagonal stripe back-
ground show the vote values of eight bins in cell-1, and
the bars with a white background denote those in cell4.
The bin vote values of cell4 are interchanged according
to the bin-bars interchange method based on the bins-sym-
metry rules (see Fig.4), and the results are shown with
the diagonal cross background bars, namely cell4s. It
can be observed that the form of the bars in cell4s is
more similar to that in cell-1 than in cell4s. These facts
prove that the bins-symmetry actually exists between the
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Fig.3 The accumulated vote results of bins in each cell shown
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The bin-bars interchange method based on the bins-

mutually symmetric cells. However, we can also find that
the vote value of bin, or bin, in cell4 is more close to
that in cell-1 than in cell4s. The main reason of this phe-
nomenon is that a large number of pixel gradients with o-
rientation nearby O or 7 are obtained in the gradient com-
putation stage, and most of these pixels, such as back-
ground pixels, are not the discriminative features of the
vehicle images. Therefore, it has little effect on the de-
scription results when the interchange between bin, and

bin, is executed. On the other hand, the bins-symmetry
rules can be clearly discovered from bin, to bin, in Fig.3
(a). The similar phenomena discussed above also exist in
cell-2 and cell-3, which are shown in Fig.3(b).

In order to verify whether the bins-symmetry rules also
exist in the non-vehicle images, a typical non-vehicle im-
age and its bin-bars interchange results of each cell are
shown in Fig. 5. As we can see from Fig. 5, the bins-
symmetry rules can seldom be found both in Fig. 5(b)
and Fig.5(c). Therefore, we can use the bins-symmetry
rules to make a distinction between vehicles and non-ve-

hicles.
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Fig.5 A non-vehicle image and its bin-bars interchange re-

sults. (a) The non-vehicle image; (b) The comparison of bin vote val-
ues between cell-1 and cell4; (c) The comparison of bin vote values be-
tween cell-2 and cell-3
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1.2.2 VS-HOG computation

The image is divided into 7 cells, and the number of
orientation bins is 8. In this paper, we assume that both
n and B are even numbers and the range of orientation is
[0, w]. The computation process of VS-HOG is shown
as below:

1) The gradient of an image is obtained.

2) According to the histogram of orientation, vote val-
ues are counted in each cell. Fig.6(a) shows the compu-
tation result.

3) Interchange operations are executed according to the
bins-symmetry rules from cell-(7/2) to cell-ny. Then, we
obtain cell-(7/2)s to cell-ns as shown in Fig. 6(b).

4) The VS-HOG vector is organized in the sequence as
shown in Fig. 6(b).
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Fig.6 The computation process of VS-HOG. (a) The computation results of bin voting in each cell; (b) The generated results of the VS-

HOG descriptors

2 ELM

ELM is a single hidden layer forward network
(SLFN). It has many good features, such as a fast learn-
ing speed, good generalization performance and automati-
cally tuning hidden layer parameters'" .

For N arbitrary distinct samples (x,, t,) e (RYxR"),
x, is the extracted feature vector and ¢, is the target output
label. The mathematical model of ELM with L hidden
nodes is

L L
;ﬁig,(xj) = Z{ﬁiG(ai, b,x) =t j=12.,N

If N=L, ELM can approximate the targets of the distinct
N samples with zero error:

N
Zf ”fj_tj” =0

That is, there are some sets of values 8,, a, and b,, such
that
L
Y B.G(a,b,x) =t, j=12.,N
which isl cl:quivalent to HB =T, where
G(a,, b,,x,) G(a;,b,,x))
H-= : :
G(a,,b,,xy) G(a,, b,,xy) L
B t
B=|: » IT'=|

T tT
BL Lxm N “Nxm

As Huang et al. ™ proved, the parameters of the hid-
den layer, {a,, b,}"_,, can be randomly generated. There
is L< N, making training error as small as possible with
The of ELM is
equivalent to solving a least squares problem.

probability one. training process

3 Experiments
3.1 Experimental conditions

In all the experiments, the algorithm was tested on a
standard laptop (Inter Core i5-3317U CPU @ 1. 70 GHz,
4GB RAM). All the feature extraction algorithms are im-
plemented in Matlab 7.0. Furthermore, the C-coded
LIBSVM" package and Matlab coded ELM are used as
two-class classifiers in comparison experiments.

3.2 Data set

All the experiments are carried out on the GTI vehi-
cle database'™” . Tt is comprised of 3 425 images of ve-
hicle rears taken from different points of view,
3 900 images extracted from road sequences not contai-
ning vehicles.
The images are extracted from videos acquired under
different weather and illumination conditions, and the
shapes and sizes in the
according to the relative dis-
the images in the database are classified into

and

All the image sizes are 64 x 64 pixels.

vehicles have different colors,
images. Furthermore,
tance,
four regions: front,

middle range, and far range.

left and right regions in the close/
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3.3 Performance

In the comparison experiments, first, HOG, V-HO-
Gand VS-HOG vectors are extracted from the images as
the feature descriptors. Then, the support vector machine
(SVM) and the extreme learning machine ( ELM) are
used as two-class classifiers to recognize vehicles. The
50% cross-validation tests, in which the training set is
generated by randomly selecting half of the samples and
the other half composes the testing set, are repeated 10
times for each iteration. The performance is evaluated in
terms of accuracy.

HOG involves several design parameters, such as the
the block size and the number of orientation
bins. According to the typical configuration, the block
contains 2 x 2 cells, and the cell is always square with

cell size,

size s x s. Regarding the number of orientation bins, two
typical values that 8 =8 and 12 have been considered. As
for the cell size, the experimental parameter s is set to be
4, 8, 16, and 32. For simplicity and speediness, block
overlapping is ignored in our tests. Based on the HOG
features and SVM classification, the results for different
combinations of s and B8 are summarized in Tab. 1 for
each of the four image regions.

Tab.1 Accuracy results of HOG + SVM for different combinations of s and 8 %
) B=8 Bg=12

Region

s=4 s=8 s=16 s =32 s=4 s=8 s=16 s =32

Front 98.70 98. 07 96. 99 93.73 98. 64 99. 10 98.48 95.01

Left 98.75 98. 81 98.29 95.33 98.75 98.75 98. 80 96.72

Right 96. 85 96. 63 95.96 93.57 97.15 97.23 97.01 95. 66

Far 97.61 97.75 96.91 87.46 98.07 97.69 97. 86 90. 45

As shown in Tab. 1, accuracy is fairly good and stable
when the cell size increases from 4 to 16, and the per-
formance decreases abruptly when s =32. In contrast, the
number of orientations contributes little to improving the
accuracy performance. The best accuracy results for each
region are highlighted in bold in Tab. 1. It can be conclu-
ded that the best results for all four regions are obtained
seemingly with (s,8) =(8, 12).

The V-HOG method involves two design parameters,
namely the number of orientation bins in the histogram,
B, and the number of cells, 5. In this case, the number
of cells takes values n =2, 4, 8 and 16, and the number

of orientation bins is set to be 8 =8, 12, 16 and 24. In
this test, ELM is used as a two-class classifier in order to
compare the speed with the SVM method. The results for
different combinations of n and 8 are shown in Tab. 2.

As can be seen in Tab. 2, for the front close/middle
range, the best performance (97.96% ) is obtained when
B =16 and 5 =8, and the best accuracy results for all four
regions are highlighted in bold in Tab. 2. It can be found
that the better performance can be achieved for n =4 or
=8 than other cases, regardless of the number of orienta-
tion bins.

Tab.2 Accuracy results of V-HOG + ELM for different combinations of 7 and 8 %
. B=8 p=12 B=16 B=24

Region

n=2 n=4 n=8 n=16 n=2 xn=4 n=8 x5=16 n=2 n=4 n=8 x=16 n=2 n=4 n=8 n=16

Front 91.68 97.22 96.62 96.81 94.02 97.23 97.78 97.23 94.67 97.65 97.96 97.14 96.03 97.65 97.92 97.19

Left 94.61 96.45 96.48 96.29 95.21 96.65 97.07 96.02 95.41 97.26 96.43 96.14 95.97 97.08 96.43 94.86

Right 93.39 94.24 94.23 94.15 94.64 94.86 94.81 93.15 94.47 95.09 94.69 92.88 94.72 94.75 93.69 93.20

Far 90.04 94.95 94.71 94.90 90.53 95.01 95.40 94.70 90.72 95.01 95.07 94.08 90.35 95.27 93.80 93.58

For the VS-HOG descriptors proposed in this paper,
there are also two design parameters, 8 and 7. The ex-
periments are performed with the same configurations 7 =
2, 4, 8 and 16, B =8, 12, 16 and 24. ELM is also used
as a two-class classifier. Tab. 3 shows the results of our
experiments.

Tab. 3 shows the best results in bold font. We can
clearly draw a conclusion that the better accuracy per-
formance is obtained using the VS-HOG method than the
V-HOG method. That is to say, the correct detection rate
is increased by about 1% . However, we can also find
that the result is not so well when the number of cells is
assigned n =2 although it is better than V-HOG. The rea-
son is that the symmetry characteristics cannot be de-

scribed quite well in detail when the image window is di-
vided merely into only two vertical symmetrical parts.
Furthermore, as we can see in Tab. 3, the performance
increases gradually with the growth of the number of ori-
entation bins, and the better result can be obtained when
B =16. The same as V-HOG, the better performance can
be achieved for =4 or n =8 than other cases, if 3 is set
to be a fixed value.

In Tab. 4, the best results of all three series experi-
ments are summarized. In this table, the parameters for
HOG, V-HOG and VS-HOG are summarized and their
respective accuracies or correct detection rates ( DR) are
compared. The dimension of HOG vector (DHV) denotes
the dimension of the generated HOG vector according to
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Tab.3 Accuracy results of VS-HOG + ELM for different combinations of n and 8 %
, B=8 B=12 B=16 B=24
Region
n=2 n=4 n=8 n=16 x=2 n=4 n=8 =n=16 n=2 n=4 n=8 n=16 5=2 n=4 n=8 n=16
Front 93.62 97.85 97.50 97.16 94.56 97.88 98.18 97.64 95.44 98.21 98.64 97.76 96.71 98.05 98.58 97.20
Left 95.50 97.04 96.97 96.64 95.94 97.30 96.93 96.37 96.07 97.79 96.85 96.53 96.35 97.54 96.84 95.98
Right 94.46 95.64 95.61 95.43 95.22 96.26 96.06 95.18 95.68 96.34 95.75 95.44 95.92 96.12 95.38 94.43
Far 90.99 95.50 95.04 95.09 91.84 95.54 95.34 95.22 92.64 95.72 95.50 95.09 92.37 95.63 95.25 94.92
the parameters, such as s, i and 8. For simplicity, there on-road vehicle verification, VS-HOG achieves a better

is no fold block overlapping during HOG computation in
our experiments. The feature extraction time ( FET) is the
time required to generate the feature vector for a given
sample. The classification time (CT) is the time required
by the classifier to make a final decision on whether it is a
vehicle or not. The total time (TT) required to process a
sample is the sum of the feature extraction and the classi-
fication time. The time in Tab. 4 is the average time
measured on the database.

Tab.4 Experimental results comparison among HOG + SVM,
V-HOG +ELM and VS-HOG + ELM

Method  Parameter Front Left Right Far Mean
s 8 8 8 4
B 12 8 12 12
DHV 768 512 768 3072
HOG + SVM FET/ms 2.615 1.974 2.517 5.836 3.236
CT/ms 0.309 0.539 0.325 4.518 1.423
TT/ms 2.924  2.513 2.842 10.354 4.658
DR/% 99.10 98.81 97.23  96.53 97.92
n 8 4 4 8
B 16 16 16 12
DHV 128 64 64 72
V_SLOI\(/; * FET/ms 2.368 1. 684 1.527 1. 856 1. 859
CT/ms 0.014 0.012 0.011 0.014 0.013
TT/ms 2.382 1. 696 1.538 1. 870 1. 872
DR/% 97.96 97.26 95.09 95.40 96.43
n 8 4 4 4
B 16 16 16 16
DHV 128 64 64 64
ngﬁ} T FET/ms 2.542 1.546 1.851 1.684 1.906
CT/ms 0.013 0.011 0.012 0.011 0.012
TT/ms 2.555 1.557 1. 863 1. 695 1.917
DR/% 98.64 97.79 96.34 95.72 97.12

First, it can be concluded that VS-HOG has better de-
tection rate results than V-HOG, and its mean detection
rate is 97. 12% which is close to classic HOG descrip-
tors. Then, we can also find that the mean value of the
detection rate of HOG is slightly higher than that of VS-
HOG. The reason is that different initial parameter values
are selected, which determine the dimension of HOG vec-
tors and the HOG capability of describing local image fea-
tures. On the other hand, HOG vectors can slowly be ex-
tracted from the images and the long HOG vector will al-
so make the classification slow. As Tab. 4 shows, com-
pared with the HOG-SVM method, the computation time
is reduced by more than half when the method proposed
in this paper is used. Therefore, as for the applications of

trade-off between cost and performance because of shorter
descriptor vectors. Finally, by observing Tab.2 and Tab.
3, an important conclusion can be drawn that VS-HOG can
obtain better accuracy results than V-HOG when 7 =4;
that is to say, VS-HOG descriptor can gain a fairly good
performance when the images are divided into a few cells.

As we can see in Tab.4, although FET of VS-HOG is
longer than that of V-HOG due to the feature vector re-
combination, all the computation total time of VS-HOG
is still less than 3 ms, which can satisfy the requirements
of most real-time vehicle detection systems. Using VS-
HOG and ELM as the vehicle verification tools, there re-
mains much time for other tasks, such as hypothesis gen-
eration and vehicle tracking. From Tab. 4, it can also be
concluded that the ELM classification speed is more than
10 times that of the SVM method, the mean of which is
less than 0. 02 ms.

Through a great deal of experiments, the parameter
values of VS-HOG are determined to achieve a better
trade-off between performance and computational cost.
The number of cells ) should be set to be 4 in order to re-
lieve the computational requirements. Another parameter
3 should be set to be 12 or 16, in which case the accuracy
rate can be above 95% .

4 Conclusion

In this study, a variation of HOG, namely VS-HOG,
is proposed, which reduces the computational cost by
using the symmetry characteristics of vehicles, and the
accuracy performance is improved steadily at the same
time. The main idea of VS-HOG is that the symmetry
characteristics of vehicle structure are exploited to im-
prove the efficiency and accuracy of vehicle verification.
In the classification stage, ELM is used as a two-class
classifier to achieve greater efficiency. The experimental
results indicate that the efficiency and accuracy of the
classifier are both greatly enhanced by using VS-HOG de-
scriptors. Furthermore, in the tests, the presented method
for the vehicle verification by using VS-HOG and ELM is
proved to be an excellent alternative method for real-time
vehicle verification.

Based on the VS-HOG and ELM vehicle verification
methodology, further work will be concentrated on the re-
alization of on-road vehicle detection systems, in which
the performance of the method proposed in this paper will
be proved in practice.
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(" A RPNEASES TREE, G 210096)
CPEAZFRITANATERARZ, 4 310018)
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