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Abstract: Aiming for the coordinated motion and cooperative
control of multi-agents in a non-rectangular bounded space, a
velocity consensus algorithm for the agents with double-
integrator dynamics is presented. The traditional consensus
algorithm for bounded space is only applicable to rectangular
bouncing boundaries, not suitable for non-rectangular space.
In order to extend the previous consensus algorithm to the non-
rectangular space, the concept of mirrored velocity is
introduced, which can convert the discontinuous real velocity
to continuous mirrored velocity, and expand a bounded space
into an infinite space. Using the consensus algorithm, it is
found that the
asymptotically converge to the same values. Because each

mirrored  velocities of multi-agents
mirrored velocity points to a unique velocity in real space, it
can be concluded that the real velocities of multi-agents also
asymptotically converge. Finally, the effectiveness of the
proposed consensus algorithm is examined by theoretical proof
and numerical simulations. Moreover, an experiment is
performed with the algorithm in a real multi-robot system
successfully.
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ver the past few years, the distributed cooperative
O control of multiple autonomous agents has found ap-
plications in many motion control problems, such as floc-
king''"”
sensus algorithm, as one of the most popular algorithms
for cooperation control, has been studied in many circum-
stances for multi-agents with single-integrator dynamics'®
and double-integrator dynamics'"™'.

Many biological social flocking behaviors occur in
bounded spaces, e. g., crowded individuals in escaping
panics and public traffic systems. Also, many applica-
tions in actual engineering aspects occur in a bounded

. 4 5
! formation control'” and rendezvous"™ . The con-
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space. For example, when multiple service robots com-
plete a task, such as sweeping the floor, they should
maintain a formation in a bounded space. Through col-
laboration, multiple robots can work more efficiently than
a single robot. So the research on consensus behaviors in
a bounded space is of particular interest for engineering
applications. Although some of the previous multi-agent
control algorithms can be applied in a rectangular
space’”™ . they do not automatically work in the irregular
space. Therefore, there is a need to generalize the algo-
rithm to work out the problems caused by the bouncing
boundaries of a bounded space. In this paper, we intro-
duce the concept of the mirrored velocity to make the al-
gorithm work in such spaces. Moreover, the algorithm is
successfully implemented in a group of real robots.

In this paper, we first give the system model and prob-
lem statements, and present the construction of the multi-
agent consensus algorithm and the proof of control law.
Then, we provide the simulation results and experimental
validation to examine the effectiveness of the consensus
algorithm.

1 Preliminaries and Problem Statements

Based on the algebraic graph theory, G = (V, ¢) de-
notes a weighted graph of order n. Here, V=1{1,2, ...,
n} denotes the set of nodes, and £ € V x V denotes the set
of edges. Let A =(a,) e R"""(a,;=0) denote a weighted
adjacency matrix. For an undirected graph, the adjacency
matrix A is symmetric. If (i,j) € &, then a; =1; other-
wise a; =0. In this paper, self edges are not allowed,
i.e., a; =0.

We consider a group of agents moving in a regular tri-
angle plane with a Cartesian coordinate system x-y. The
origin is established in the left vertex of the bottom, and
the x axis points to the right along the bottom side. With-
out loss of generality, we suppose the time sequence 0 <
7(1) <7(2) < ... to be the instantaneous time when the
agents touch the wall. Each agent has the following dy-
namic equation:

p.(1) =v. (1) } ()
V() =u,(1) =24,(0){v,(t-),n)n

where i Vand p, = [pl,p 17, v, = [vi,]7, u, = [u,

[AR ]

u ] T e R? are the position, the velocity, and the control
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input, respectively; n denotes the unit normal vector of
the regular triangular side; v, (f =) = limv, (s) and
St =

v,(t+) =limv, (s) are the left and the right limits of

v.(s) ats=t; (v,(t-),n) denotes the inner product;
the A,(¢) matrix is defined as

iﬁ(l—r(k)) 0
A1) = =1

0 Y 5(1 - (k)

where § is the Dirac function.
When t=7(k),

b (t+) = v(t =) +f+u,(s)ds —2f[+A,.(s)ds<vi(t J)mym =

v,(t-) —’2_<v1.(t—),n>n =
v,(t=) =2nn'v,(t-) =
(I =2nn")v,(t-)

It implies that when ¢ = 7( k), the elastic collision oc-
curs for the agent. v,(r—) and v,(7+ ) are the incident
and reflection velocity, respectively. When r # 7(k),

I+

v.(t+) =v,(t-) +f u,(s)ds =v,(t-), which means

:
that the velocity is continuous if the agent does not touch
the wall.

Let w be the unit normal vector which is perpendicular
to n. We use the convention such that (n,w) forms a
right-handed coordinate frame with n x w pointing to the
reader. § is the angle between vector n and vector x,
which is positive if n x x points to the reader, otherwise
negative. v,(t— ) denotes the velocity before the agent i
touches the wall, and v,(f+ ) denotes the velocity after
the collision. Defining symbolic variable L, (¢), it is 1
before the collision and -1 after it.

Define the mirrored velocity matrix as

— bsing +aL,(t)cosf® asing + bL,(t) cose]

k. =
/(1) —bcosf —aL,(t)sind acosf — bL,(t)sing

where n=[a,b]", w=[ —b,a]”, and they meet a’ +
b’ =1; k,(0) =I"*, K,(1) =k, (0)k,(7(1))k,(7(2))
-k, (7(k)), where k, (7 (1)), k (7(2)), -,
k.(7(k)) denote the value after the agent touches the
wall, that is to say, L,(t) = - 1.

Define mirrored velocity v,(7) =K, (t)v,(t). As t=
7(k), one has

b (t4) =K, (t+)v,(1+) =
K (0)k,(7(1)) -k, (7(k=1)) -
[ — bsinf — acosf asinf — bcosH .
—bcos + asinf  acosf + bsing
(I-2nn")v,(t-) =
K (0)k,(7(1)) -k, (7(k=1)) -

[ — bsing + acosf asinf + bcosH
— bcosf — asing  acosf — bsing
K(1-)v(1-)=v(1-)

Jpi-) =

It means that at the instantaneous time ¢ = 7( k), the
real agent velocity v,(#) is not continuous. However, the
mirrored velocity v,(¢) is always continuous.

2 Main Results

Next, we present our control law as follows:

u (1) =— K (1) Z’Ia,.,<Ki<t>vi<r> CK(),(1)
(2)

Theorem 1 Consider a system including n agents,
each with dynamic equation (1) under the control proto-
col (2). If the graph G is undirected connected, the ve-
locities of all the agents asymptotically converge to the
same values.

Proof First, we define the mirrored acceleration &, (t)
=K,(t)u,(t), and the mirrored position and velocity have

been defined as before. p,(f) = p,(0) +f v,(s)ds, and
0

v.(t) =K, (t)v,(t). Obviously, p,(t) =v,(t).
Because of I,(t) = -2L.(t)8, when t=7(k), taking
the derivative of v,(¢) =K,(t)v,(t), one has

5,(0) =k, (0)k,(r(1)) -~k (r(k=1)) -
—bsind +aL,(t)cosd asing + bL,(t)cosh
{ [ —bcosh —aL,(t)sind acosh —bL, (1) sinﬁ]
aL,(t)cos§  DL,(1)cosd
. . . . V.(l+) =
—aL,(t)sing -bL,(t)sing] '
k,(0),(7(1)) -k, (7(k=1)) -
—bsing +aL,(t)cosd asing + bL,(t)cosh
{[ —bcosh —aL,(t)singd acosH—bLi(t)sine]u‘ )
28L,()v, (1) -
[ acos@(a’ +b* -1)
—asing(a’ +b> - 1)

v.(t) +

beosf(a’ +b° - 1)
—bsin0(a2+b2—l)]} 3)

Substituting @’ +b° =1 into Eq. (3) yields
5,(1) =k (0)k, (7(1)) -k, (r(k=1)) -
—bsind +aL,(t)cos® asing +bL,(t)cosf
[ —bcos® —aL,(t)singd acose—bLi(t)sinG]u’ )
K.()u,(1)

Therefore,
p,(1) =v,(1) }
v.(t) =u,(t)
Calculating the determinant of k,(¢) , one has

—bsing +aL,(t)cosf asing + bL,(t)cosh

k. =
&, (0) | —bcosf —aL,(t)sind acosh —bL,(t)sing
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L(t)(a*+b*) =L,(t)#0

Therefore, k, (t) is reversible, and K, (t) =
k. (0)k,(r(1))k,(7(2))---. Hence, K,(t) is also re-
versible.
According to &,(t) =K,(t)u,(t), the mirrored accel-
eration is &,(t) = — 2 a;(v,(t) =v,(1)).
izl
We construct a Lyapunov function candidate; H(t) =

% Y v;(1)v,(1). Taking the derivative of H(1) gives
i=1

H(1) = gvf(t)u,m -
_ gf’,T(l) i{a’j(f)"“) —v,(1) =

n n

-5 % T a0 =50) G0 =5(1) <0

i=l j=

Defining the average mirrored velocity v(t)

2 v.(t), then we have

n
i=1

1
n

Ly St —n) =0

i=1 j=1

It means that »(¢) is a constant.
When the undirected graph is connected, by LaSalle’s
invariance principle, we have lim(v,(#) —,(t) ) (v, ()

-v,(1)) =0, and when t—o , »,(1)—¥,(1).
3 Simulation Results

We verify the proposed algorithm through numerical
simulations in a regular triangle. In this paper, we choose
n =10, and the initial position and velocity of each agent
are chosen randomly. For the regular triangle, the side
length is L = 100. The vertex coordinates are (0,0),

(%/%), (L,0). We can obtain 4 = { - %’%’

5w - B 1
6 }, the normal vector n = {(0,1),(2,—2)
(_@

2

, —;—) } , and the tangent vector w = { (-1,0),

ﬁ) ,(L, —“/—?T) } We choose adjacent matrix A =

1
(7’7 2772

0 1

1 0 . .
. Rt so the undirected graph is connected.
1 0

The simulation results are shown in Figs. 1 to 4. The

initial distribution is given in Fig. 1, and the velocity of
each agent is represented by the length and direction of
the line. The trajectories are shown in Fig. 2. Fig. 3 gives
the consistent state of all the agents at 75 s. We can con-

100 -
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Fig.1 The initial positions and velocities of 10 agents
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Fig.3 The positions and velocities of 10 agents at t =75 s

. s72)

I

S w»h O v O v O wn O wn

v/(m

=

1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
t/s

Fig.4 The velocities of 10 agents



Consensus control for multi-agents in a non-rectangular bounded space: algorithm and experiments 77

clude from Fig. 4 that the velocities asymptotically con-
verge to the same values in about 20 s, and by the calcu-
lation, we find that the final velocity is the average of ini-
tial velocities.

4 Experimental Validation

We validate the proposed algorithm on a multi-robot
platform. In the experiment, we choose the Amigobots
which are used to obtain the results.

A diagram depicting the position, heading, forward
and angular velocities of the robot is shown in Fig. 5. We
have the following dynamic equation,

) cosg, (1)
400 = g 1 )
@, (1) =w,(1)

where v,(f) e R, w,(t) e R are the forward and angular
velocity inputs, respectively; &,(t) e R’ is the position of
the center C of the robot, and ¢,(t) is the orientation an-
gle.

I

i

I

|

x X
Fig.5 The model of the wheeled mobile robot

To avoid the nonlinearities in Eq. (4), we introduce a
new coordinate'""’ | p, =& +d[cosg, Sinﬁpf]T for a posi-
tive number d. Here, d is the distance deviating from the

center of mass. Letting

. cosg; sing,
[a)’ ] -l - 1fsin Lcos Vi (5)
i d Pi d Pi
we have
X - sing;,
) =& + d L=
P, =¢§ cose, ] j
cosg, - sing; 1. 1
. ]v. +d[ ][ ——sing, fOOSgoi]v,. =
sing, cosg, d d
cos’p,  sing,cosp,
sing,cose, sin¢,
sin’ g, — sing,cosp, 1 0
. 2 ]V,- = [ ]vi =v,
— sing,cose, cos @, 0 1

According to the aforementioned results, we have
v,(t+)=(I-2nn")v,(t-). When t =7(k), for the
bottom edge, we can conclude that ¢, (t+) = —¢,(1-),
and n=[0 1]". Then

—()1]”"“_)

v[(t+):(1—2[(1)][0 1])v[(t—):[(1)
As a result,
v (1+) =[cosp,(1+) sing,(1+)]v,(1+) =
[eos( -, (1=)) sinC=g(r=D][} © Jti-) =
[cos(p;(t=)) sin(e,(t=))]v,(t-)=v,(1t-)

and
1 . 1
a),.(t+):[ —Fsmgoi(l‘+) gcos¢i(t+)]vi(t+)=

[ —%sin(—go[(t—)) %cos( —so,-<t—>>] -

[(1) f)1]““_):

[sinCei=))  ——eos(p,(1-))] -

d
v(t-)=-w(t-)

For the right hypotenuse, ¢,(f+) = —120° —¢,(f-)

and n = [—“/—37 —1—], and then v, (t + ) =
2 2

—-sin30° - cos30°
[ o .COS ]v.(t—). Therefore ,

—co0s30°  sin30° 1’

v,(t+) =[cosp,(t+) sing,(t+)]v,(t+) =

[cos( —120° -, (t-)) sin( —120°—¢,(t-))] -
—sin30°  -cos30°

[ “cossoe  sinzoe P17 =
[

cos(e;(t=)) sin(eg,(t=))]v,(t=) =v,(t-)

and

w(t+) = —i?sin<p,.(t+) 17c05¢i(t+)]vi(t+) -

[ ——sin( -0 -, (1-)) —eos( ~10° g, (1-))] -
—co0s30°

[ —sin30°
sin30°

—co0s30°

Jy.i-) =

[%sin(goi(t—)) —%cos(go,(t—))]v;(f—):
_wi(t_)

In the same way, when 7 =7(k), for the left hypote-
nuse, we have the same conclusion, namely v,(7 + ) =
vi(t-) and w,(t+) = —w,(t-). When t#7(k), the
controller is Eq. (5) with ¥,(¢) =u,(¢) and u,(¢t) in
Eq. (2).

Next, an experiment is conducted for the velocity con-
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sensus algorithm in the simulation software MobileSim
with three Amigobot wheeled mobile robots to demon-
strate its effectiveness. The control parameters are set as
follows: n =3, d =0.02 m, the sampling time 7 =0.015
s, and the initial conditions of the group are chosen as

p,(0)=[5 2.8]"m
p,(0) =[5
p,(0) =[5 0.8]'"m

1.81"m

v, (0) =120 mm/s
v,(0) =80 mm/s
v;(0) =40 mm/s

2 5 8
e(0) =55, :(0) =75, i (0) ==

First, let the three robots run for a while, and then
each robot will acquire some velocity. The complete
moving trajectories of three robots are plotted in Fig. 6 ac-
cording to the distributed algorithm. At the beginning,
the velocities of three robots are different, but due to sev-
eral incidences of bounces on the boundaries, the veloci-
ties of the robots will reach a consensus eventually. We
find that the robot crashes into the wall, just as a beam of
light falls onto the mirror and creates a regular reflection.
Meanwhile, when we enlarge the parameter d, the robot
will make a slow turn. On the contrary, if we decrease
the parameter, the robot will make a sharp turn and be-
come more unstable. In other words, the robustness de-
creases. Although sometimes the actual velocities do not
parallel each other, the mirror velocities always do.
However, due to several incidences of bounces, the actu-
al velocities also parallel each other. We can find that
eventually the robots synchronize to a common moving
direction with a common speed. It is clear that the experi-
mental results are well consistent with the corresponding
theoretical results.

Fig.6 The trajectories of 3 Amigobots

5 Conclusion

In this paper, we introduce the concept of mirrored

speed and extend the double-integrator control algorithm
from an infinite space to a bounded space. With the help
of a mirrored matrix, the discontinuous real speed is con-
verted into a continuous mirrored speed, and the mirrored
matrix is also suitable for non-rectangular regions, so it is
more general. The connectivity of the undirected graph
ensures the consensus of velocity. Furthermore, the con-
sensus algorithm is implemented in the control of the
wheeled multi-robot systems. Results of the simulations
and experiments show that the proposed algorithm can be
effectively applied to multiple wheeled mobile robots.
The future focus is to study how to maintain a formation
in a bounded space, so that it makes more sense to con-
duct cooperative exploration in a bounded space.
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