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Abstract: The conventional single model strategy may be ill-
suited due to the multiplicity of operation phases and system
uncertainty. A novel global-local discriminant analysis
(GLDA) based Gaussian process regression ( GPR) approach
is developed for the quality prediction of nonlinear and
multiphase batch processes. After the collected data is
preprocessed through batchwise unfolding, the hidden Markov
model (HMM ) is applied to identify different operation
phases. A GLDA algorithm is also presented to extract the
appropriate process variables highly correlated with the quality
variables, decreasing the complexity of modeling. Besides,
the multiple local GPR models are built in the reduced-
dimensional space for all the identified operation phases.
Furthermore, the HMM-based state estimation is used to
classify each measurement sample of a test batch into a
corresponding phase with the maximal likelihood estimation.
Therefore, the local GPR model with respect to specific phase
is selected for online prediction. The effectiveness of the
proposed prediction approach is demonstrated through the
multiphase penicillin fermentation process. The comparison
results show that the proposed GLDA-GPR approach is
superior to the regular GPR model and the GPR based on
HMM (HMM-GPR) model.
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ecently, soft sensor technique is a promising solution
Rtowards online quality prediction'' ™. The collected
historical data which involve high-dimensional, highly
correlated and redundant variables lead to a difficulty in
building the prediction model*’. A global-local discrimi-
nant analysis ( GLDA ) is proposed for the Gaussian
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process regression ( GPR) in the nonlinear projection
space. Its goal is to find a set of the most important varia-
bles which integrate the global and local discriminant in-
formation by maximizing the ratio of distances between
samples with large differences in output values and those
with small differences in output values for dimension re-
duction. In addition, the batch processes encounter multi-
ple operating phases, which are probably driven by feed-
stock, production rate, temperature and pressure. Such
characteristics of batch processes make the single regres-
sion model ill-suited and result in unreliable quality pre-
diction. The hidden Markov model (HMM) is a good
candidate for batch processes with system uncertainty due
to its strong stochastic and inferential characteristics .
Therefore, the advantages of the HMM for phase identifi-
cation are combined with the merits of GLDA for dimen-
sionality reduction and GPR for quality prediction.

1 Preliminaries

1.1 Multiway hidden Markov model

The HMM is an extension of Markov chains that gener-
ates a sequential observation depending on the underlying
process state. In the HMM, the actual sequence of states
is not directly observable but is hidden from the output
measurements. The complete specification of an HMM
model includes the following key elements: 1) Hidden
states, S=1{S,, S,, -+, Sy}, where N is the number of
states; 2 ) Observable measurement variables at each
state, 0 =1{0,, O,, -+, O,,} , where M is the number of
observation variables per state; 3) State transition proba-
bility distribution, A = %aij} is an N x N state transition
probability matrix, where a; = P(q,,, =S, | g,=S,) and
q, represents the hidden state at time 7; 4) Observation
probability distribution, B = {b, (k) |, where b, (k) =
P(o,, lq, = S.), 1<jsN, 1<k<sM and o, denotes the
value of the k-th observation variable at sampling time ¢;
5) Probability distribution, 7 = {7,} , where 7, = P(q,_,
=§,), I<i<N.

Thus, the HMM model parameters H = f(A, B, 7)
are calculated from the following measurement sequence :

0= %01 ,02,“',01% = { {01_1 2051577750y } 5
%01,2’02.2"“’0M,2} PR %OI,T’OZ,T’“-’OM,T} (1)

For batch processes with multiple operation phases, the
HMM is applied to estimate the probabilities of measure-
ment outputs at the invisible states. The multiphase
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process is assumed to follow Markov property that the
current state only depends on the previous state instead of
the older ones.

Consider a state sequence Q = {q,, q,, ***, q,, ",
q,} as the operation phases. At any sampling time, the
value of state variable g, can be one of the N different hid-
den states as ¢, € {S,, ]l <i<N}. A preprocessing step
of data unfolding prior to further analysis is required due
to the collected historical data in the form of a three-way
observation matrix O = | of;) ', where 1<i<M and M
denotes the number of measurement variables; 1<;<T

and T represents the number of sampling instants; 1 </<
L and L corresponds to the number of batches. This three-
way matrix in the /-th batch is rearranged in the format of
sequences as

(O] (O] @ (0
| ol ]|
1,12%2,1 YV M) 1,29
=1 =2
) (0 (
%OifT’OZ{T9'“?0M,,T} (2)
t=T

Here, the sequence can be considered as 7 sequential
blocks. Then the two-way data matrix through batchwise
unfolding can be given as

) M |, M feee] (O . (D

I=1 e

0( ) O],l OM,I 01‘2 0M,2 OI,T OM,T

(1=2) @ o @ ot @)
b _ 0 — Ol,l OM,] 01‘2 OM,Z 1,7 OM‘T (3)

(1=1) ) (| W (1) (L) (L)

0 Oy 0 Oy |01y 0 Oys|eee|Op 7 0 Oyp

. o T

The corresponding state matrix is expressed as v, =f(x,) +&,=x, B +¢, (8)

(I=1) (I=1) (I=1)

q, q, o4y
(1=2) (1=2) (1=2)
0- q, - 2 QT: (4)
q](l':L) q;l‘:L) q(Tz;L)

With the observation sequences O and corresponding
state sequences @ in the unfolded training data set, the
HMM can be first trained to estimate different operation
phases by the Baum-Welch algorithm. Given the ob-
served measurements O, the corresponding optimum state
sequences Q° =1{q,, q,, ***, q,} can be solved by using

the Vierbi algorithm as follows"”

Q" =arg maxP(Q | 0,H) (5)

Furthermore, for any test batch 0" | its observation
sequence is rearranged as

) (te) (te) (te) (te) (te) (te) (te)
0" = % Olfel ’ 2lel D) A;el } ’ { llez ’ 2lez PR M‘ez } 5"
(6)

%
(te) (te) (te)
%Olfr ’ ZTT "”’OMI,T% }
It can be categorized into its underlying operation phase
by maximizing its likelihood,

i" =arg lrrsll_agfvP(f)“e) 1S) (7)

1.2 Gaussian process regression model

Available historical data are presented as matrices X e
R" and Y € R'™", where X contains n input samples
with d easy-to-measure variables, and Y contains n output
samples with difficult-to-measure variables. The aim of
the data-driven soft sensor is to obtain the process model
between X and Y. A Gaussian process is a collection of
random variables'® , any finite number of which follows a
joint Gaussian distribution'”’. In a linear Gaussian process
regression model, the output variable is assumed to be a
linear combination of input variables and an additive
noise.

where x, is a measurement of input variable; y, is the out-
put variable value; f is the regression function; g, is the
noise following a Gaussian distribution with zero mean
and variance o ; and @ is the regression coefficient vector
and follows a Gaussian distribution with zero mean and
covariance of 3,, B ~N(0,3,).

A Gaussian process is completely determined by its
mean m(x) and covariance function 3'(x,, x;) , where x,
and x; represent the two input measurements. Given the
process inputs and regression model parameters , then the
conditional probability density function of the output vari-
ables is calculated as

P(Y‘X’ﬁ) = HP(yi x,”ﬂ) =
Tl o =B vixg o

where I is the n x n identity matrix. In the Bayesian esti-
mation, the posterior probability of 8 is given by

_P(Y|XB)PB) _ PY|XBPQB)
PBIYY) = P(Y | X) _jP<Y\X,ﬂ>P<ﬂ>dﬂ

(10)

According to Ref. [ 6 ], the mean vector of regression
coefficients is expressed as

B=0 (o XX"+3,") 'XY=03'XY (11)

with 3, =0 °XX" +3,'. The posterior probability of 8
can be given by P(B | Y,X) ~N(B,3,"). The predic-
tive distribution can be written for any test sample x, and
corresponding output y, as

P(y | x X,Y) ~N(o x[3,' XY x[3,"'x)  (12)
Then the output prediction is obtained as
Jo=o % 3 XY (13)
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The nonlinear version of GPR is adopted to enhance the
capability of dealing with inherent nonlinearity in this
study. With ¢( - ) denoting the nonlinear mapping func-
tion, Eq. (12) is rewritten as

P(y |x . X.¥) ~N(o ¢(x) '3, ' $(X)Y,
d(x)'3, b(x,))

A kernel function is defined as
k(x,x") =¢p(x)"'3,p(x")

Substituting ¢ ( - ) function with this kernel function,
Eq. (14) becomes

(14)

P(y |x,X,Y) ~Nik(x ,X)[«(X,X) +cI] 'Y,
k(x %) —k(x, . X)[k(X,X) +o 1] 'k(X ,x)} (15)

with the output prediction , = x (x,,X) [k (X,X) +
aI]7'Y.

&

2 Proposed Approach

2.1 Global-local discriminant analysis ( GLDA)

The aim of the soft sensor based on the collected histor-
ical data is to build a mathematical model approximating
the unknown functional dependence between process vari-
ables and the key quality variable. Historical data often
contains a relatively large number of measurements of
process variables. However, some of variables are unim-
portant and include little information about the output var-
iable, which increases the model complexity. The useful
variables that relate to the quality variable should be ex-
tracted before the soft sensor development ®’. Therefore,
global-local discriminant analysis ( GLDA) is presented
for dimensionality reduction. By maximizing the ratio of
distances of samples with large differences in the output
value and those with small differences in the output val-
ue, the GLDA algorithm integrates global and local infor-
mation to extract the most significant variables and re-
move the irrelevant or redundant variables. The presented
algorithm is based on linear discriminant analysis for re-
gression (LDAr) "™,

The principle of the LDAr algorithm is briefly de-
scribed first. Given a set of input/output pairs {(x,,
y) 1, ,x, e Ry, e R™" and n denotes the number of
the pairs. Here, d is the number of original variables and
c is the dimension of the output vector which is often as-
sumed to be 1. The within-class and between-class scatter
matrices for LDAr are written as

1
Sw = Z fw(yi,)’,)(x,- _xj)(xi _xj>T
Ny iy ea,
1
S, = — z fb(yi’yj)<xi _xj)(xi _x‘/)T
My (i ea,
where A, = { (i,j) | \y,—yi\ -7<0,i<j} is the mem-

bership set of nearby output pairs representing small
differences; A, = { (i,j) | |y, -y | —7=0,i<j} is the

membership set of faraway output pairs representing large
differences; n, and n, are the cardinality of A, and A, ,
respectively; the threshold parameter 7 = eo,, o, repre-
senting the standard deviation of y, e representing multi-
ple factor ranged in [0.1, 1.0]. The function f, and f,
are non-negative weight functions, defined as f, (x) =
fo(x) = | | x| =7 . Although the extracted leading
components by the LDAr algorithm show good perform-
ance'®™' | they can only capture the local data informa-
tion. One critical drawback of the LDAr method is that it
does not explicitly consider the global data information.
In this paper, the global weight matrix is defined as

S, =+ ¥

n, +n,;ja,ua,

)fg(y[ _yj)(x[ _xj)(xi _xj)T
(16)

where the function is defined as f,(x) = Ix|.

Likewise, the nonlinear mapping ¢( - ) is adopted to
transform input data in a d-dimensional space into an r-di-
mensional feature space in handling the nonlinear proces-
ses. Suppose that the mapping is centered,

n

2 ¢(x;) = 0. The corresponding within-class scatter
i=1

i.e.

’

matrix, between-class scatter matrix and global weight
matrix in the feature space are rewritten as follows:

1
S. = 2 L G[ex) —d(x) [d(x,) —dp(x) " =
w (i) eA,
1 n n
Y Y Lax) —x) Iwle(x)T —d(x)"] =
wi=1 j=1
2 2
ZH(X) (D, =W)X = 2¢O LX) (17)
where X = [x,,-+,x, ] € R”" is an input matrix, ¢ (X)
=[¢p(x,),,dp(x,)] eR™ is a feature matrix, W =
[w,] e R""is a symmetric matrix whose element is
" _{fw(y,-—y,-) if (i,j) €A,
00 otherwise
D, is a diagonal matrix whose diagonal elements are the

column sum of w,, i.e., D} = > w,. L, =D -W,_,
i

is called the local similarity matrix.

o 2 2

S, = ~6(X) (D, - W)b(X)" =n*d>(X)Lb¢(X)T (18)
b b

where W, = [ b, ] e R""" is a symmetric matrix whose ele-
ment is

b__:{fb(y,-—y,-) 1f(l,]) EAb
Y10 otherwise
D, is a diagonal matrix whose diagonal elements are the

column sum of b,; i.e., D) = z b, L, =D, — W, is
J

called the local dissimilarity matrix.
S, ==
n, +n,

$(X) (D, -W)b(X)" (19)
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where W, =[ g, ] e R""is a weighting matrix whose ele-

ment is g, =f,(y, =y;); D, is a diagonal matrix whose

diagonal elements are the column sum of g,; i.e. , Dt =
z g; L, = D, — W_is called the global dissimilarity
7

matrix.
For the need of regression, a motivation of dimensional
reduction is to find a projection that makes the samples
with large differences between output values become more
dissimilar, and simultaneously makes the samples with
small differences between output values become more
similar. Therefore, a good projection means that it can
maximize the local and global dissimilar matrices and
minimize the local similar matrix at the same time. If the
nonlinear transformation can satisfy Egs. (17), (18) and
(19) simultaneously, the most important variables highly
related to output variable will be extracted. Thus, the
projection matrix can be found by maximizing the follow-

ing objective function
a' (8, +8 Lo

=
a S a

a = arg max (20)
It is difficult to solve directly the GED problem of Eq.
(20). There are coefficients g, (i =1, 2,---, n) such
that
a =Y 0d(x) =¢(X)0 (21)
i=1
We define an 1 x n matrix K by K = $(X) "¢(X) , whose
element is k(x,, x;) :d)(x,.)Tqb(xj). Centralize the ker-
nel matrix K=K -1 K-K1,+1 K1, , where all the ele-
ments of 1, is 1/n. Substituting Eq. (21) into Eq. (20),
the numerator and denominator of Eq. (20) are

o' (3, +5,)a = 0"6(X) 'S () Lb(X) $(X)0 +

— 2 $(X) (X)L, b(X) (X)0 =

nb + nw
2 T 2 T
= 0"KL,K0 + 0'KL K0 (21)
ny ny + n,
a'S a= %OTKLWKO (22)

w

The objective function of the GLDA approach can be re-
written as

0'K(L,+L,)K0

0"KL_Ko (23)

0 =arg max
When the denominator of Eq. (23 ) is nonsingular, the
projection vector @ is given by solving GED problem:

K(L,+L,)K6, =A,KL K A=A, ==, (24)

o, 0.] e R™Y the
nonlinear feature vector z of a new sample x is obtained,
z=P'k(X, x). The matrix KL K is sometimes singular
for predicting problems of batch process. As an effective

By the projection matrix P = [ 6

preprocessing method, PCA is first applied to project the
dataset into the subspace so that the matrix KL K is nons-
ingular.

2.2 GLDA-based GPR model (GLDA-GPR) for on-
line quality prediction

In this work, the Gaussian kernel function is adopted.
The model parameters are tuned by the cross-validation
procedure. The detailed procedure is summarized below ;

1) Collect the input and output data of the batch
process.

2) Conduct batchwise unfolding on the multiway data
and scale the formed two-dimension matrix with zero
mean and unit variance along all the process variables at
each sampling instant.

3) Use the unfolded input data in the training set to es-
timate the HMM through the Baum-Welch algorithm and
identify all different operating phases.

4) Compute the three matrices, global dissimilarity
matrix , local similarity and dissimilarity matrices, respec-
tively.

5) Specify the kernel function and then compute the
kernel matrix and normalize it.

6) Conduct generalized eigenvalue decomposition to
obtain the eigenvalues and corresponding eigenvectors.
Form a reduced-dimensional discriminant subspace P,.

7) Build the multiple local GPR models in the sub-
space using each pair of input and output block matrices.

8) Unfold each new measurement sample in the test
batches and normalize them. Then obtain the correspond-
ing nonlinear feature vector of the test sample. Further-
more, identify the operation phase to which the batch be-
longs through the Viterbi algorithm with the maximized
likelihood estimation.

9) Estimate the quality variable value of each test sam-
ple using the local GPR model with respect to the identi-
fied phase.

3 Case study
3.1 Fed-batch penicillin fermentation process

A simulated fed-batch penicillin fermentation
process''”’ is adopted to demonstrate the online measure-
ment capability of the GLDA-GPR approach. The accu-
rate and reliable online estimation of the quality variable
can provide real-time feedback of the model-based ad-
vanced control design in batch processes' '
ting results are compared to the regular GPR model and
the HMM-GPR model. The appropriate kernel parameters
are selected to avoid the models overfitting or underfit-
ting.

In the batch process simulation, the microorganisms are
grown during the initial 40 h until the cell density is max-

. The evalua-

imized. Then the fermenter process is switched to the fed-
batch mode in order to boost the synthesis of penicillin.
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The entire process for each batch has the duration of 400
h with a sampling interval of 0.5 h. Two cascade control-
lers are implemented in the process to track pH and tem-
perature set points. The substrate of glucose and oxygen
are continuously fed into the fermenter for cell growth and
penicillin formation. The process exhibits nonlinear dy-
namics, multiphase feature and system uncertainty. In
this paper, ten measurement variables including the aera-
tion rate, agitator power, CO, concentration, substrate
feed temperature, substrate concentration, pH, dissolved
oxygen concentration,
water flow rate and generated heat are used as input varia-
bles, while three quality variables including penicillin
concentration O,, biomass concentration O, and substrate
feed rate O, are selected as outputs. The initial and opera-
tional parameter settings of the process operating condi-
tions are given in Tab. 1 and Tab. 2.

fermenter temperature, cooling

Tab. 1 Initial conditions of operational parameters in the
fed-batch penicillin fermentation process
Variable Initial condition

Substrate concentration/ (g + L -1 14 to 16
Dissolved oxygen concentration/(g + L") 1.05 to 1.25
Biomass concentration/(g - L") 0.05t00.15
Penicillin concentration/(g + L") 0
Culture volume/L 99 to 102
CO, concentration/(g + L") 0.5t00.8
pH 4.5t05.5
Fermenter temperature/K 297 to 304
Generated heat/kJ 0

Tab.2  Set points of operational parameters in the fed-batch
penicillin fermentation process

Variable Set point
Aeration rate/(g + L™") 8t09
Agitator power/W 28 to 32
Substrate feed flow rate/(mL - h~") 35 to 45
Substrate feed temperature/K 295 to 298
Fermenter temperature/K 297 to 301
pH 4.8—5.1

A total of 30 batches as training set are collected for
building the soft sensor model and the additional 10 bat-
ches in test set for predicting quality variable in terms of
the accuracy and reliability. The following root-mean-
square error (RMSE) and R’ indices are used to evaluate
the learning and prediction capability of soft sensor

L
(Af.le) _ s.te))z

RMSE(i) = & 2

TL
L T

(A;le) _ f.le))Z
RZU) _1_;; Yiii Yiii
- L T

(25)

(26)

—(te) (te) \ 2
(y; =Y
=1 j=1

where L and T denote the number of batches and sampling

instants in the test set; y'*’ denotes the mean value of the

i-th output variable; y"

and ﬁfjf) are the actual and pre-
dicted measurements of the the i-th output variable for the

[-th batch and the j-th sampling instant, respectively.
3.2 Online soft sensor prediction results

First, three inherent operating phases including lag
phase, growth phase, and saturation phase are identified
using the HMM conducted on the training batches, which
coincides with the actual operation shifts. The obtained
identification result is given in Fig. 1. The fermentation
process begins and continues for 48 h in the first phase.
Next, it is shifted to the second phase and remains for
292 h. The production saturation of penicillin corresponds
to the last phase.

4 -
Staturation
| |
| i phase
[ L
3 [ : A
1 1
@ i i
= 1 Growth phase i
w ] |
@ 2r I |
= Lag | i
A Iphase! 1
[~ I
1 pmm— i
1 1
1 1
1 1
1 1
1 1
O 1 1 1 11 |
0 100 200 300 400

Sampling time/h

Fig.1 Phase identification of the simulated process

Then these training batches are projected onto the re-
duced-dimensional latent variable space and the extracted
directions describe the most significant information about
the quality variable among the identified phases. Further-
more, the multiple local GPR models are built in the pro-
jection space. Each measurement sample of test batches
can be categorized into an individual operating condition
so that the local GPR model can be adaptively chosen for
the online quality variable estimation. The predicted time-
series trends of the three output variables by averaging
over the 10 test batches are plotted in Figs.2 to 4. Mean-
while, the quantitative comparison of different soft sensor
modeling and prediction results are listed in Tab. 3. It can
be observed that the regular GPR model leads to the worst
prediction of three output variables. As shown in Fig. 2,
a significant offset from the actual measurement trajecto-
ry, especially between the shift phases, denotes that the
GPR model has fairly poor prediction of the penicillin
concentration. This is because the model cannot effective-
ly capture some of the local switching, and this attributed
to multiple operating phases of batch process. These pat-
tern switches across different phases reveal that the regular
GPR model is not sensitive to the shifting dynamics with-
in various phases. As a result, the performance signifi-
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cantly deteriorates. Similar prediction trends of biomass
concentrations and substrate feed rate are exhibited in
Figs.3 and 4. On the other hand, the HMM-GPR method
is superior to the regular GPR model in terms of evalua-
ting performance because the HMM model is available to
handle the multiple operation phases in the original meas-
urement space. The HMM model can effectively estimate
the probabilities of the process operation with respect to
different phases in a stochastic fashion so that the local
GPR model can obtain more accurate predictions than the
regular GPR model. Consequently, the HMM-GPR meth-
od can perform well compared to the GPR model.

1.5

—4/-\ +

1

=

0

< L. (U

£

g

=

5}

£0.5r

8

k= +  GPR model

= o HMM-GPR model
g o Proposed model
£ 0 @ Actual value

i 1 1 |
0 100 200 300 400
Sampling time/h

Fig.2 Comparison of penicillin concentration predictions by
three different methods
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Fig.3  Comparison of biomass concentration predictions by
three different methods
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Fig.4 Comparison of substrate feed rate predictions by three
different methods

Tab.3 Comparison of soft sensor modeling and prediction re-
sults using regular GPR, HMM-GPR and proposed methods

Ou'tput Method RMSE K

variable Training  Prediction  Training Prediction

GPR 0.127 0.158 0.892 0.853

0, HMM-GPR 0.086 0.102 0.937 0.914

Proposed 0.053 0.091 0.962 0.925

GPR 0.524 0.812 0.923 0.912

0, HMM-GPR 0.378 0.634 0.960 0.934

Proposed 0.097 0.185 0.974 0.961

GPR 0.726 0. 895 0.885 0.863

0, HMM-GPR 0.582 0. 694 0.906 0.892

Proposed 0. 105 0.233 0.932 0.921

Moreover, the composition estimation using the GL-
DA-GPR approach can not only capture the shifted rela-
tionships and track each change in the different operation
phases, but also extract the most influential process varia-
bles which are highly correlated with the quality variable.
Multiple phases have no obvious effect on the perform-
ance of the model. A minimal variability across all three
variables indicates that the online prediction of the model
matches well their actual values. The proposed method
provides the most accurate prediction of these three quali-
ty variables since it gives the smallest RMSE index values
among the three methods. In addition, we examine the
uncertainty information of the proposed GLDA-GPR mod-
el by the output result of biomass concentration in terms
of predictive variance. As shown in Fig.5, the predictive
variance changes greatly in different phases, but slightly
inside each phase. In other words, most of samples are in
control and do not violate the model since the values of
predictive variance are relatively small. Thus, it can be
inferred that the presented approach has reliable perform-
ance for online prediction. In a word, the proposed ap-
proach leads to different local GPR models in the discrim-
inant subspace with respect to various phases and provides
a relatively accurate prediction of quality variables in the
batch processes.

3_

Predictive variance

1 1 1 ]
0 100 200 300 400
Sampling time/h
Fig.5 Predictive variance of the proposed method for biomass
concentration



86

Lu Chunhong and Gu Xiaofeng

4 Conclusion

A nonlinear probabilistic soft sensor is constructed for
the online prediction of the quality variable in the form of
the Gaussian distribution. The proposed approach in-
tegrates the HMM to automatically segment multiple pha-
ses of batch process.
are highly related to the quality variable are extracted
through the GLDA method. In this way, some crucial in-
formation can be retained in the reduced-dimensional sub-
space,
reover, multiple local GPR models are constructed in the

Some important process variables

serving the subsequent regression modeling. Mo-

obtained space to characterize the shifting process dynam-
ics within each individual phase. The proposed approach
is applied to the fed-batch penicillin cultivation process to
provide accurate measurements of quality variables. Com-
pared to the regular GPR and HMM-GPR methods, the
GLDA-GPR approach has better prediction performance.
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