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Abstract: One-dimensional generalized Boussinesq equation u,,
-u, +(f(u) +u,), =0 with periodic boundary condition is
considered, where f(u) = u’. First, the above equation is
written as a Hamiltonian system, and then by choosing the
eigenfunctions of the linear operator as bases, the Hamiltonian
system in the coordinates is expressed. Because of the intricate
resonance between the tangential frequencies and normal
with special
the regularity of the

frequencies, some quasi-periodic solutions
structures are considered. Secondly,
Hamiltonian vector field is verified and then the fourth-order
terms are normalized. By the Birkhoff normal form, the non-
degeneracy and non-resonance conditions are obtained.
Applying the infinite dimensional Kolmogorov-Arnold-Moser
(KAM) theorem, the existence of finite dimensional invariant
tori for the equivalent Hamiltonian system is proved. Hence
many small-amplitude quasi-periodic solutions for the above
equation are obtained.
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n 1870s, Boussinesq'" derived some model equations

for the propagation of small amplitude long waves of
the surface of water and first mathematically explained the
existence of Scott Russell’s solitary wave phenomenon.
One of the most well-known Boussinesq’s equations is

£
—u

u, —Uu, —ig( wy, - —u, =0 t>0,xeR (1)
2 3

As the initial value problem is linearly ill posed, we are

interested in the following equation connected with

Boussinesq’s work for water waves, which has the advan-

tage of being linearly well posed and is just a variant of

Eq.(1):

t>0,xeR (2)

Uy = U+ U +f( M) xx =0
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when f(u) =u’.
nonlinear string.

There are many significant results on Eq. (2). Bona et
al. ™ proved the global existence of smooth solutions and
the stability of solitary waves. Liu et al.”™

Eq. (2) is derived from a model of a

obtained in-
stable solitary waves, instable and blow-up solutions, and
the strong instability of solitary-wave solutions. Through

the variational iteration method, Yusufoglu"' showed
blow-up solutions.

In this paper, we consider Eq.(2) with nonlinearity
f(u) =u’ under the periodic boundary condition:

u(t, x +2ar) =u(t, x)

(3)

Both the KAM method and the CWB method can be ap-
plied to prove the existence of quasi-periodic solutions for
Hamiltonian partial differential equations. Compared to
the CWB method, the KAM method can give more infor-
mation on the stability and dynamics. For Hamiltonian
PDEs under the Dirichlet boundary condition, the opera-
tor corresponding to the linear part of equation only pos-
sesses simple eigenvalues, which is a simple case for the
KAM theorem. However, under the periodic boundary
condition, the presence of multiple normal frequencies
brings great difficulty to handle more complicated reso-
nance between the frequencies. In 2000, Chierchia and
You'* developed the KAM skill for the case of multiple
normal frequencies. It is required that the perturbed vec-
tor field has good regularity which ensures some decay
property for the shift of normal frequencies. If the vector
field has no such regularity, the compact form'” or
Toplitz-Lipschitz property™
can be used to overcome this difficulty. But the perturat-
ed Hamiltonian system does not have these properties;
thus, the previous methods are invalid for our problem.
However, by observation, the vector field in our problem
has some special property, which motivates us to seek
some special solutions.

of the perturated Hamiltonian

1 Hamiltonian Structure and Main Result

Define phase space P = H' ([0, 2w]) x L*([0, 27]).
Let w=(u,v) € P with u, =v_. Then Eq. (2) is equiva-
lent to the following Hamiltonian system:

u, =v,

4
v, =0.(u-u, —f(u))} )
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with the Hamiltonian function
21 2 2
u Y
H(w) = f Gt
where g(u) = — j fis)ds . Let
0

J 0 2
) [ax 0 ]
be the weak derivative operator with respect to the L’ in-

ner product on the space L*([0,2w]) x L*([0,2w]) in
the following sense:

) = = [ amdr == [ (e (0 +
u(x)y'(x))dx

where w(x) = (u(x),v(x)) e L’([0,2w]) xL* ([0,
2mw]), z(x) = (@(x),¢(x)) e C; (0,2m) x C7 (0,
2).
Eq. (4) can be written as
dw

Y_Jv.H

ar (5)

where V H denotes the weak derivative of H with respect
to the L’-inner product.

Note that J is an anti-self-adjoint operator in P C
L*([0,2w]) xL*([0,2w]). Eq. (5) is a Hamiltonian
system with the Hamiltonian H and the phase space P.
The corresponding Poisson structure is defined by

2m 2
IF.Gl = [ WFITGA = [ (2, 29, 9o, 9G)q,
0 o \du " 9y Jv " Ju
where F(w) ,G(w) e C” (P). Note that g, is still un-
derstood to be a weak derivative operator.
Now we consider the linear part of Eq. (5) and define
a linear operator by L: we D=H' xH NP—L* xL’, L.
w=(u,v)>Lw=(v,, u, —u,). It is easy to see that
under the periodic boundary condition (3), L has eigen-
values u, and the corresponding eigenfunctions ¢, ¥, j €
Z, where u, =0, ¢, =(0,1), 4, =(1,0) and for j=1,

p— ;sinjx
. = Fi m, b, :[ + if3,cosjx
- J

libij:

[ @;Cosjx

FiB;sinjx

with coefficients

/1 i
%= 7rj2+2’ﬁj_ w42

P,=1(c ,¢c,) ¢, ,c, e Cl denotes null space of the op-
erator L. Let 3 = P/P, be the quotient space of P over
P,. Then the Poisson product is non-degenerate on 3 and

L has eigenvalues y ,; with eigenfunctions ¢ _;, ¢, 0n 3,
j=1.
Since ¥ =span{¢,,, ;| ,.,, forwe X, we havew =

Y (r,q,p; + rpak;) , where r; =r_ is the weight to be
=0
decided later. Letg = {q,|, p=1{p;{,.,. Then (q,p)
are the coordinates of w with respect to the bases {¢
lpij } =1

Leta>0, s>0 and ¢ = (q,,q,,

+j

,q,, ). Define

lal2,= 3 g, I%¢* . Then 1 =
=1
o | isa Hijlbert space. Suppose thatg=(--,q _,,*"q_,,
g5 ) = 145t 0and g, = (g, G, ).
Define [lq |}, = lq. 7, + g I}, Let ;" =1{q=
{q;1 20 | gl ., <o |, then it is also a Hilbert space.
For convenience of notation, letq_,=¢q;, p_;=p;, j=

lgllql,, <

1. We endow [;° x [; with symplectic structure w
= iz (dg; N\ dq; +dp, \ dp;) . If q;, p, are the conju-

j=1
gatejof q;, p;, respectively, then the Hamiltonian H (w)
is a real function.
To consider the Hamiltonian system (5) in the coordi-
nates ¢, ¢, p, p, we first compute the Poisson bracket.
To make the Poisson bracket in a standard form, r, =r_,

J

is set to be , j=1, then
2map;
{F,G}:iz (ﬂ&_ﬁﬁ_,_i&_i ﬁ)
=t \oq_; dq; 9g; 9q.; dp; 9p; Ip; 9P

One has the standard symplectic structure i 2 (dq_; N\

i=1
dq;, +dp_; \ dp;) . In these coordinates, the Hamiltonian
Eq. (5) is written as

. _ _;0H _oH . 0H _, oH
4 ag 0 =150 P P,
Vi=1 (6)

with the Hamiltonian

2
H=A+G = ZILj(qj'q_j +pjp—j) +J0 g(u)dx
=1
(7)
where p, =j V145

Lemmal Leta,s>0. If tel—(q(t),p(t)) ely’
x I} is a solution of (6), then

u(rx) = 3 (,(q,(1) +q,(0))sinjx +7,(p, (1) +
p_(1))cosix)

N

Vo

In the coordinates ¢, g, p, p, the nonlinear term G =

2

J .
1+/

is a solution of Eq. (2), where vy, =

27
- % f u* (x)dx becomes G = G* + G” + G*, where
0
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G" :_%_Z G?;(';d(qi +‘1_,~)(61_,- +q—j)(qk +q—k)<ql +q_1)

k=1

1
G” =_Z G?;d(qi +CL,~)(61,- +qu>(pk +p—k)<pl +p4)
ifki=1
1
G" =_T G(;d(pi +P_,~)(P_,- +p_j)(pk +p—k)(pl +[J_,)
ifd=1
where

27

Gy = yiy,.y,;y,f sinixsinjxsinkxsin/xdx  (8)
0

2
Gy = yifyjfyk'ylf cosixcosjxsinkxsinlxdx ~ (9)

0

2
G = 'yi'yi'yky,f cosixcosjxcoskxcoslxdx
X 0

(10)

It is easy to see that the mode pair (g,,9_,), (p;,p_;)
share the same frequencies, which brings much difficulty
for the infinite dimensional KAM theory. Since the previ-
ous method is invalid for our problem, we are interested
in special solutions. More precisely, under some parity
condition of the nonlinearity, we find

E=1{(q;,9_;.,p;>p_;): p;=p_;=0,j=1,2,-1
F=| (q/'7Q—jspj’p—j): qj:qu:O’j:I’z’...%

are invariant subspaces for the system. Obviously, on E
or F, the system is reduced to a Hamiltonian system with-
out multiple frequencies.

Denote E =span{¢_; |, and F = span{ |
we have 3= EQF.

Lemma 2 The spaces E and F are invariant under the
flow of the Hamiltonian system (5).

Proof Letz(r) = 2 r,q;,(t);(x) +rp, (), (x)

J#0

be a solution of system (5) with z(0) € E, then p_,(0)
=0, j=1,2,---. In the following, we prove that for all ¢
=0, z(t) e E. It is equivalent to the following fact.

If (q(t),p(t)) is the solution of (6) with p(0) =0,
where ¢ = (q;) .o, P = (P;) ., then p(¢) =0. Obvious-
ly, the equations for p are as follows:

then

j=1

p; == iwp; + ;} Gi?z,i,jqqupf + ;} G(i)i‘,k,tpipkpl

P, = iMjp-j + ;{ Gi?/,i‘—jqkqlpi + ;G?j‘—j,k‘lpipkpl

where the coefficients are defined in Egs. (8) and (9).
Obviously p =0 is an equilibrium point. By the elementa-
ry existence and unique theorem for the differential equa-
tion, it follows p(¢) =0. Thus, we have z (7)
= Y rq;(1)¢,(x) and so z(1) € E. Similarly, we can
j#0

prove that F is also invariant for the system.

Now we consider the restriction of the Hamiltonian sys-
tem (6) to E, with a little abusing of notations, we still

rewrite the Hamiltonian as

H(g) =A+G = Y mwqq. +G"(q)

i=1

with G = G* and the corresponding symplectic structure

= izf dg; A\ dg; . Its equations of motion are written as
j=
. 0H . 0H

= —1 =1 =1
7 20 g, 24, Yj

(11)

Combining Lemma 1 and Lemma 2, we have
Lemma3 Leta, s>0. If I»["",t I>(q(t),q(1))
is a solution of Eq. (11) where

14, (1) )
2q (1))

q(1) =(q,(1),q,(1) -
q(t) =(q_, (1) ,q_,(1),

then u(t,x) = 2 ¥,(q; + q_;)sinjx is a solution of Eq.
=1

4 2

1 J
2aN 1T+

Below we shall verify that the system (11) satisfies all
assumptions of an infinite KAM theorem. The linear part
of Eq.(11) is

(2), where y, =

4= ~iwd;, 4., =4, V=1 (12)
where u, =j /1 +j°. It is easy to see that q,(1) = e’i“”q;) ,
where q_(; is the initial value. Depending on the number of
excited modes, the combined motion is periodic, quasi-
periodic or almost periodic. For any finite choice J = {1
<n, <n,<--<n,} CN, there is an invariant 2b-dimen-
sional linear subspace E, under the flow of (12) foliated
into invariant tori T,(I) with frequencies w, ,u, ,*** i, -
T,(I) is defined as

TJ(I)Z{q‘quO,ji./, ‘qm :Ik’kzl’z’...’b%

where I = (I,,---,1,) e P’ and P’ = {I e R" | 1, >0 for 1
<j<b}. Moreover, all the solutions have vanishing
Lyapunov exponents.

Corresponding to the invariant torus, the linear equa-
e =0 has an invariant manifold in H' (0,
24r) , on which the linear quasi-periodic flows correspond
to quasi-periodic solutions. Thus, for the linear part, the
Hamiltonian system (11) has a family of invariant tori
{T,(I):IeP}.
earity G, and a Cantorian familiy of invariant tori will be

tionu, —u,_ +u

We aim to show that with the nonlin-

preserved. Then, equivalently, Eq.(2) has a Cantorian
family of quasi-periodic solutions.

Theorem 1 For any be N (b=2) and the index set
J=1{n, <n, <+ <n,} CN, the Hamiltonian system
(11) has a Cantorian manifold £C (s >1/2) of real
analytic and elliptic diophantine b-tori given by a Lipschi-
tz continuous embedding @: T,[ C] —E, where C is a
Cantorian set of P’ and has full density at the origin, and
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@ is close to the inclusion map @,

r—0

” D-P, || a,s,BNTC] — 0( VJ)

where B, is a ball in /*’ centered at the origin with radius
r>0, o >0. Moreover, on these invariant tori, the
Hamiltonian system (11) admits a family of linear quasi-
periodic flows. Hence, Eq. (2) has a family of quasi-pe-
riodic solutions.

2 Regularity and Birkhoff Normal Form

First, we prove the regularity of the nonlinear Hamilto-
nian vector-field X,, corresponding to G = G* with u(x)

= 2 v;(q; + q_;)sinjx and prove that it is bounded on
j=1

[**. Let a=0 and s=0; the subspace [, consists of all

bi-infinite sequences p = 1{:-*,p _,,p_,,Po P1,P2,**| With

a

finite norm Hpr,_S: Ipy |7+ 2 \pj\z \j\zsez‘j .
7

We fix a >0 and s > L later. Let /5 be the Hilbert

2
space of all bi-infinite, square summable sequences with
complex coefficients. In the same way as Ref.[9], we
define a mapping F' by

1 ikx
F: L', p | >Fp=——3 pe"
Ve K
Obviously, F is an isometry between [, and L’.
For p,q e [,, we define the convolution of p, g by

(P *q)k = Zpk_,‘qj' .

jez

Lemma 4" For a=0, s> %, the space [, is a Hil-

bert algebra with respect to convolution of sequences and
HP *q [ s =C ||p I s I q [ .., With a constant ¢ depending
only on s.

1 .
Lemma 5 For a=0, s >—, the Hamiltonian vector

field X, is real analytic as a map from some neighborhood
of the origin in [** into [**, with || X, I 0y =0( lql fu).
Thus, X, is bounded on [*’.

For simplicity, we extend the subscripts of y, u and G
to all nonzero integers by

o= = Y=Y 10 G =G e
Vi,j,k,l==+1,£2, -
Thus, we have G = - % ; OG,jk,q,.q,.qkq,. By basic
i,jk,l#

computation, it is not difficult to verify that G, =0 un-

less i +j+k+1=0. In particular, one has G, :%[2 +
8; 17,
Lemma 6 If i,j,k,[ are nonzero integers, such that i

+j+k+1=0 and each permutation of (i,j,k,[) is not
of the form (r, —r,m, —m) , then

1
R

Proof Note that u, = /j* +j' =/ +%+g(j) , and

1

1
4 o (a1
N +j +(]+2)

g) = P+ (P ) =

11

then | g(j) | < 1 =L. Similar to Ref. [9 ], we can

27 8
obtain the conclusion.

Lemma 7 There exists a real analytic, symplectic co-
ordinate transformation ¥ defined in some neighborhood
of the origin in [**, which transforms Hamiltonian H = A
+ G into its Birkhoff normal form up to the fourth order:

HoW=A+G+G+K

= 1 — . .
where G = _?ZGgqiq-ﬂjq—j , ‘l‘ or ‘]‘ € %nl’

n,,-+,n,} with uniquely determined coefficients
3wyly;  i#)
G, =l o
ij a4 . .
Gy="v =]

Gl =0Clal.), d=9\1q,.9,,.q,} and [K]
=0( | q HZ_‘). Moreover, X.,X., X, are real analytic
vector fields in a neighborhood of the origin in [“*. Obvi-
ously, the Hamiltonian A + G is integrable, and the
fourth term G only depends on §.

Proof Let ¥ =X, =X, |,_, be the time-1-map of

. i
flow generated by F = .Z:]Fly.k,qiqjqkq, with F,, = -
LRVAL

o
Gijkl T .. .

—— = for the indicies (i,j,k,l), which have at

R R T 1

least one of elements in | £n,, £n,,:-, +n,}| and are

=0 other-
wise. Since in a small neighborhood of the origin in [,
X, is small, thus the flow X is well defined for 0<r<I1.
Using Taylor’s formula at t =0, we have

not the permutation of (r, —r,m, —m); F,,

HoW=A+{A,F} +G+K

1

where K = f(l ~ ) {{A,F} F} o X.dt +f [G,F} o

0

X,dz .
3 Cantor Manifold Theorem

By the application of the Cantor manifold theorem,
which is proved in Ref. [9], we can prove Theorem 1.
For the readers’ convenience, we state the Cantorian man-
ifold theorem.

Letz=(z,,2,*",2,, ) €l“". Let Hamiltonian H(z)
be a real analytic in the real part and imaginary part of z
in a neighborhood of the origin of [“* and the form H = A
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+ Q0 + R, where A + Q is the integrable normal form
while R is some higher order perturbation. Let z = (Z,%)
= (2152, 3 2y st 5 Znansot) €1 With 2= (2,25, 00,
z,) and £=(z,,,,2,,,, ) and set

I:(‘Zl‘zy‘zz‘z,”" < 2)

n

2

Z=( Zn+l ‘ ’

Zn+2 ‘2"“>

We assume that the normal form consists of the following
terms

A=(a,D) +(B,Z), 0 :%(AI,D +(BI.Z)

with constant vectors e, 8 and constant matrices A, B.
For the Hamiltonian A + Q, the equations of motion
are

N . Tay ~ N . a
z;=i(a+AI+B2)z;, 2, =i(B +BI) z
Thus, there is a complex n-dimensional invariant mani-

fold E={z=(%,2) el
E is completely filled with the invariant tori

£=0}, and up to the origin,

T(I) =1{(z,0) | |z |*=1,1<j<n|
I= (Il,---,ln) e P"

on which the flow is given by
2 =i, (D7, o(I) =a+AI

Moreover, on the normal space of T(I) , the flow is giv-
en by

2, =i (D)2, ) =p +BI

As the presence of higher order terms R, in general,
the manifold £ does not persist entirely due to resonances
among oscillations. However, for the Hamiltonian H = A
+ 0 + R, alarge portion of E can persist near the origin
and they form an invariant Cantor manifold E.

To state the result, we should first make some assump-
tions ;

1) Non-degeneracy condition. The normal form A + Q
is non-degenerate in the sense that for all (k,l) e Z" xZ”
with 1< |1 <2: @ det A#0; @ (I,8) #0; @ (k,
o(I)) +{1,02(I)) #0.

2) Spectral asymptotical property. There exist d =1
and § <d -1 such that

B =i+ +0()

where the dots stand for terms of order less than d in j.
3) Regularity. For the Hamiltonian vector-fields of Q
and R, suppose that X,, X, e A(I*",1"") , where s is de-
fined by s=s ford>1, s>s ford=1.
Remark 1 By the regularity condition, the elements
of B = (Bii) I<jsn<i

formly in 1 <j<n. Consequently, for d =1 there exists a

satisfy the estimate B, = O(i'™") uni-

maximal positive constant k such that

0

.—_Qj
ele0G) i)

uniformly for bounded /. While for d >1, let k = o .
Suppose that Hamiltonian H = A + Q + R satisfies as-
sumptions 1), 2), and 3), and

IR =0(lzl;

a,s

y+o(lz]5)
with

g>4+ , A=min(s -s,1)

Then there exists a Cantor manifold £ of real analytic, el-
liptic diophantine n-tori given by a Lipschitz continuous
embedding @.T[ C]—E, where C is a Cantor set of P"
and it has full density at the origin, and @ is close to the
inclusion map @, :

@ =@, I, yores =0, g =S K142

2 K
Consequently, £ is tangent to E at the original point.
4 Proof of Theorem 1

Forb>1, letJ={n <n, < <nt, (z,,2,,,2,)
=(4,,9,,"
rest components of ¢ = (¢, ,qg,,++) by deleting {q, ,q, ,
"'qm} .
Mn,,) , B = (Mk)k#n,,nz,w,n,,' Let y, :')’;21.’ i=1,2,-, band
(Ypu1>Vps2» ) consist of the rest terms of {—yjz. |. From
the above discussion, we have

,q,) and (z,,,,2,,,, ) consist of the

In the same way, we define @ = (u, ,u, , """,

A=(a,D) +(B,Z), ?;:%W,n +(BI.Z)

where I = (z,z,,"

A= —%TF"DCD with D =diag(%,,,9,) ,

0202) » £ = (25012015 %p022p005 )

3 4 . 4
4 3 - 4
C=| . : :
4 4 - 3

37, _ - -
and B = —%—r(yb+1 Foias) (¥,,+,y,). For conven-

ience, we write HoW as HoW=A+Q +R with 0 =G
and R=G +K. Let w(I) =a+AI and Q(I) =B + BL

It is obvious that the asymptotical increasing property
of the normal frequencies and regularity of the vector field
satisfy the assumptions of the Cantor manifold theorem.
Moreover, it is not difficult to verify det(A) 0 and (k,
w(I)) +{1,02(I)) ##0; thus we obtain the non-degen-
eracy condition and non-resonance condition. By the
Cantor manifold theorem, we prove Theorem 1.
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