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Abstract: A Markov chain-based stochastic model (MCM) is
developed to simulate the movement of particles in a 2D
bubbling fluidized bed ( BFB). The state spaces are
determined by the discretized physical cells of the bed, and the
transition probability matrix is directly calculated by the results
of a discrete element method (DEM) simulation. The Markov
property of the BFB is discussed by the comparison results
calculated from both static and dynamic transition probability
matrices. The static matrix is calculated based on the Markov
chain while the dynamic matrix is calculated based on the
memory property of the particle movement. Results show that
the difference in the trends of particle movement between the
static and dynamic matrix calculation is very small. Besides,
the particle mixing curves of the MCM and DEM have the
same trend and similar numerical values, and the details show
the time averaged characteristic of the MCM and also expose
its shortcoming in describing the particle
dynamics in the BFB.
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instantaneous

umerical simulation has been a very popular and ef-

fective method to simulate the mixing and flow of
particles in granule systems, which can provide detailed
information to understand the particle dynamics, such as
the discrete element methods ( DEM)-CFD model!'™ and
the Eulerian-Granular model"”'.
ods are based on the basic rule and fundamental equa-
tions, which requires many computational resources and a
long computing time. By comparison, the semi-empirical
model has high efficiency and needs low computational
loads, such as the plug flow model' and the bubbling
two-phase model”™. However, the movement and mixing
of particles are impossible to obtain in such kinds of mod-
els.

But most of these meth-
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For a compromise, the Markov chain-based stochastic
model (MCM) can both quickly compute and have the
ability to track the particles in granule systems, particu-
larly in the powder technologies'®®. Doucet et al. " suc-
cessfully used the first-order MCM to simulate the mixing
of monodisperse particles in a rotating drum. Also, the
transition probability of particles moving from one cell to
another is directly calculated from a DEM result. The
work shows that the MCM has the ability to give a good
estimate of the particle dynamics. Ponomarev et al. """
applied the MCM to the static mixer, and they calculated
the probability distribution of particles flowing across the
mixer according to shape parameters. The model gives
very satisfying results, and it is convenient for accounting
for the oscillating character of mixing kinetics due to par-
ticle segregation.

However, the interaction between the solid phase and
gas phase in the fluidized bed is much stronger than that
in both the rotating drum mixer and the static mixer. Al-
so, as the existing of bubbles, the flow in the fluidized
bed is very complicated. Gottschalk et al. *
multiphase MCM for the particle transport in a bubbling
fluidized bed (BFB), and made it possible to take into
account the finite velocity of fluidization bubbles. The

introduced a

model parameters are determined by mass balance or
long-time behavior, e. g., the knowledge of the invariant
distribution. As the fluidized bed is discretized into sever-
al horizontal cells along with the height of bed, it is im-
possible to simulate the radial mixing or movement of
particles. The results from the MCM are compared with
the experimental results, showing that the model accounts
for the effects seen. The possibility that the MCM is not
necessarily stationary (time-homogeneous) is given. Har-

. 2
ris et al. '

simulated the motion of one single particle
moving up and down the riser using the Markov chain.
Two models are presented. One is a core-annulus solids
interchange model, and the other is a four-zone model
that follows from the fast fluidized bed hydrodynamic
profile. Models are linked to actual experimental condi-
tions using local particle transfer rates between each mod-
el section, and the simulation output agrees well with the
experimental data. The macroscopic characteristics of the
riser, such as residence time distribution (RTD) and the
simulated trajectory of one single particle, can be ob-
tained. Yet, the detailed mixing and particle movement
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still cannot be calculated.

In this paper, a MCM is introduced to simulate the par-
ticle movement in a 2D BFB. The probabilities of parti-
cles flowing between two cells are calculated directly
from the DEM results. Also, the probability distributions
of particle position are calculated from both the static and
dynamic transition probability matrices, which are used to
discuss the Markov property of the BFB. In order to vali-
date the accuracy of the MCM, the particle mixing of the
MCM and DEM simulation are compared, and the sug-
gestion for the further improvement of the MCM is given.

1 Model Description
1.1 Markov chain

A Markov chain is a random process that undergoes
transitions from one state to another in a state space, and
it can be used to model a random system that changes
states according to a transition rule only depending on the
current state. The memoryless property of the Markov
chain is called the Markov property. The details of the
MCM can be found in Ref. [13].

The 2D BFB is discretized to m equal divisions in
width, and n equal divisions in height. The nm separate
cells form nm states of a Markov chain as shown in Fig. 1.

(n-1)m+1 | (n=-1)m+2 | ... nm
m+1 m+2 2m
1 2 m

Fig.1 Discretized fluidized bed with nm cells
The details of the bed are shown in Tab. 1.
Tab.1 Details of the BFB

Parameter Value
W/m 0.27
H/m 1.05

d,/mm 1.0
N, 81 000
pp/(kg -m™) 2 600
uy/(m+s7") 1.5

So the transition probability matrix has the size of nm
x nm, which is calculated from the statistical data of a
DEM simulation.

In this research, the actual time of DEM simulation is
from O to 20 s, and the simulation time of MCM is from
15 to 20 s. The transition probability matrix of MCM is

calculated using the results of DEM from 10 to 15 s, as
shown in Fig. 2. That is, the MCM learns the statistical
rules of particle motion from the DEM results, and fol-
lows the rules to impel particle system running. What
needs to be emphasized is that the DEM simulation of the
actual 5 s (15 to 20 s) costs about 20 h, while the MCM
only costs about 15 min. So the MCM is very efficient.

10s 15s 20s
[ | | [ |

DEM —= DEM(20 h)

10s 15s 20 s
L | | ]

DEM — Markov ( 15 min)
Fig.2 The simulation time of two models

In this paper, time step Af is set to be 0. 025 s. The
calculation details of the transition probability matrix
based on the Markov chain are presented as follows. As-
suming that from the moment 7, to ¢ there are N, par-
ticles moving from S, to S;, and there are N particles in
the state S, at the moment #,. The transition probability
P, from the moment 7, to 7, , can be calculated through
the following relationship;

p+l

M o
P,={N (1)
0 N=0

The transition probabilities between any other two
states at this time step can be calculated by the same
method, and they form the matrix of transition probabili-
ties at each time step. The average value of different ma-
trices at different time steps is the final transition proba-
bility matrix for the MCM. As the probability that parti-
cles move between any certain two states is fixed, this 2D
matrix is called the static transition probability matrix.
What needs special note is that the period of DEM simu-
lation results for the calculation is a stable condition and
is fully developed.

Once the transition probability matrix is obtained, the
probability distribution of particle position can be easily
calculated at any time. A Monte-Carlo method is em-
ployed to move a certain particle from one state space to
another based on the transition probability and a random
number generated by computers.

1.2 Model applicability

In order to find out whether the BFB meets the Markov
property or not, a 3D transition probability matrix based
on the memory property of particle movement is calculat-
ed. The 3D matrix considers the previous moment 7, |,
the current moment ¢, and the next moment ¢, , .
ing that from the moment ¢, to ¢, , there are N, particles
moving from S, to §;, and there are N’ particles in the

Assum-
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state S, at the moment ¢,. All these N, particles are in the
state S, at the moment 7, ,. The transition probability P

from the moment ¢, to 7,

ijk
can be calculated through the
following relationship ;

N, N'#0
P,={N (2)
0 N' =0

The new transition probability between every two states
is not fixed, so this 3D matrix is called the dynamic transi-
tion probability matrix. The calculation of transition prob-
abilities is still based on the results of DEM simulation. In
addition, the dynamic matrix significantly needs much
more computer memory and a longer computing time.

2 Results and Discussion
2.1 Discussion of Markov property of the BFB

The transition probability matrix is one of most impor-
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Frequency/ %
Frequency/ %

(d)

Fig.3 Probability distribution of particle position based on the static transition probability

s; (d) 0.80s; (e) 1.05s; (f) 1.30 s

Frequency/ %
Frequency/ %

Frequency/ %
Frequency/ %

(e)

tant parts of the stochastic model. Once the matrix is ob-
tained, it is convenient to calculate the probability distri-
bution of particle positions, which is helpful to understand
the macroscopic properties of the particle movement.

Fig. 3 is the probability distribution of the position of a
batch of particles at 0.05, 0.30, 0.55, 0.80, 1.05 and
1.30 s after being put into the bottom of the bed, which
is calculated by the static transition probability matrix
based on the Markov chain. The particles first flow up
and tend to come close to the middle of the bed. Then,
they spread and flow down at the top of the dense phase
region as the bubbles break. Finally, the particles gradu-
ally spread over the whole dense phase region. The prob-
ability distribution of particle position shows the overall
particle movement and demonstrates the back mixing
characteristics of the particles in the BFB.

In order to discuss the Markov property of the BFB,
Fig. 4 shows the probability distribution of the particle
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Frequency/ %

Frequency/ %

(1)

Fig.4 Probability distribution of particle position based on the dynamic transition probability matrix. (a) 0.05 s; (b) 0.30 s; (c)

0.55s; (d) 0.80s; (e) 1.05s; (f) 1.30 s
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position calculated using the dynamic probability transi-
tion matrix. While the computation loads and time costs
of dynamic matrix calculation are almost one thousand
times that of the static matrix, the probability distribution
of particle position does not change much both in the
overall trend and details. Although it cannot be definitely
proved that the particle movement in the BFB has the
Markov property to meet the need of Markov chain, using
the MCM to simulate the particle movement in the BFB
still has some basis through this comparison.

2.2 Comparison of the particle mixing of two models

In order to validate the accuracy of MCM, the particle
mixing of MCM is compared with that of the DEM simu-
lation. To better understand the radial particle mixing in
the BFB, the bed is divided into two parts, the left half
and the right half. At the moment of the 15th second,
which is the time that MCM starts calculating, particles
are marked as left half if they are in the left half bed, and
are marked as right half if they are in the right half bed.
In the same way to study the axial particle mixing, parti-
cles over the height of 0.25 m of the bed are marked as
up half, and below the height of 0.25 m of the bed are
marked as below half. Figs.5(a) and (b) show the ra-
dial and axial particle mixing of both DEM and MCM in
the BFB, where the number fraction means the percentage
of marked particles that still remain in the original part of
the bed in the process of simulation.
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Fig.5 Particle mixing of two models in the BFB. (a) Radial
particle mixing; (b) Axial particle mixing

Fig.5 shows that there are about 54% particles in the
left half bed, and about 44% particles in the right half
bed at the moment of the 15th second. Then after 5 s of
DEM simulation, about 50% original left half particles
move to the right half bed, and also about 50% right half
particles move to the left half bed. The radial mixing of
MCM has the same trend, but the mixing speed is slow.
Another clear difference is that the mixing curves of
MCM are much smoother than those of DEM. From the
comparison of axial particle mixing of two models shown
in Fig. 5(b), there are much more particles in the low
half of the bed (about 65% ) than in the up half of the
bed (about 35% ) at the beginning. As the asymmetry of
low and up half bed, about two-thirds of the original low
half particles move to the up half bed, and about one-
third of the original up half particles move to the low half
bed in the rest time of DEM simulation. While the parti-
cle mixing is a little slower in the low half bed and a little
faster in the up half bed of MCM compared to that of
DEM. Besides, the mixing curves of MCM are still very
smooth compared to that of DEM.

On the one hand, the bubbles have strong effect on the
particle mixing in the BFB, and the effect becomes stron-
ger and stronger as the bubbles increase, combine or
break along with the height of the bed. MCM only pays
attention to the particle phase and uses the averaged static
transition probability matrix. The effect of bubbles on the
particle mixing is much weakened in the MCM. This may
be the reason why the mixing curves are so smooth in
MCM, and there are differences in the mixing speed be-
tween the two models. However, the comparison of par-
ticle mixing of the two models demonstrate the ability of
MCM in describing the time averaged mixing trend of
particles in the BFB, although its instantaneous particle
mixing characteristics is not so good as the DEM.

3 Conclusion

The comparison between static and dynamic transition
probability matrices shows that it is reasonable to develop
the MCM of BFB, because it is highly effective and part-
ly has the ability to describe both macroscopic and micro-
scopic movement of particles in the bed, such as the
probability distribution of particle position and particle
mixing. The accuracy of MCM is validated by the parti-
cle mixing comparison with the DEM simulation. As the
bubble phase cannot be negligible in BFB, the simple
Markov chain that only calculates particle phase is not
sufficient for the MCM to match DEM on the details of
particle dynamics. The bubble phase or other factors
should be considered using appropriate methods to im-
prove the MCM of BFB.
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