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Abstract:In order to improve the prediction precision of the
safety performance function ( SPF) of freeway basic
segments, design and crash data of 640 segments are collected
from different institutions. Three negative binomial ( NB)
regression models and three generalized negative binomial
( GNB ) regression models are built to prove that the
interactive influence of explanatory variables plays an
important role in fitting goodness. The effective use of the
GNB model in analyzing the interactive influence of
explanatory variables and predicting freeway basic segments is
demonstrated. Among six models, the two models (one is the
NB model and the other is the GNB model. ) which consider
the interactive influence of the annual average daily traffic
(AADT ) and length are more reasonable for predicting
results. Furthermore, a comprehensive study is carried out to
prove that when considering the interactive influence, the NB
and GNB models have almost the same fitting performance in
estimating the crashes, among which the GNB model is
slightly better for prediction performance.
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ompared to other kinds of highways, the freeway is
C often designed with a relatively good driving envi-
ronment, such as high alignment indices, a good pave-
ment, being completely closed, no pedestrians, no inter-
ference from low speed, effective traffic safety devices,
and so on. Thus, the accident rate and death toll on the
freeway is within an average of 30% to 51% and 43% to

76% of ordinary highways in developed countries. How-
ever, the number of accidents, death tolls, injury tolls and
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the direct loss of property is 3.2, 8.4, 7.2 and 24. 3 times
the ordinary average for highways in China. Therefore, it
is important to determine the actual circumstances of acci-
dents occurring on freeways and how freeway environments
influence the accident rates based on reliable databases.

Over the past several decades, historical surveys cover-
ing the characteristics and frequency of accidents invol-
ving freeways has been a very active research area''™’.
However, in terms of freeway accidents in China, no
specialized accident databases and highway design data-
bases have yet been made available. Also, there is very
little investigation clarifying China’s current situation.
Zhong et al. " developed the crash prediction model with
a relatively small number of samples. Therefore, this pa-
per attempts to establish models with large samples.

Mathematical statistics and regression analysis have
been common methods used in predicting highway cra-
shes. Other methods, such as fuzzy mathematics, the
grey theory, the nerve cell method and clustering analy-
sis, have also been used to establish the prediction mod-
els. However, freeway accidents are the results of the
combined influence of multiple factors, such as align-
ment, traffic volume, the presence of an interchange or
other structures. The above-mentioned methods explain
how a single factor influences the crashes but fail to ex-
plain the interactions between these factors and how these
influence the crashes. For this reason, when studying the
crash prediction models, the freeway is often divided into
several segments (a basic segment, general segment and
special segment). The prediction function of the basic
segment is also called the safety performance function
(SPF) and it is the basis of the others.

The parameters of the SPF are the length of the seg-
ment and the traffic volume. The prediction result is the
number of crashes. As for general segments or special
segments, the crash number can be modified by crash
modification factors (CMFs). Thus, the SPF is the basis
of the freeway crash prediction model and the precision of
the final result will be directly determined by the SPF. In
order to determine the combined influence of multifac-
tors, flexibility is introduced here to explain the influ-
ence. Flexibility is used in the manufacturing industry to
explain the variational environment or the probabilistic
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ability from the variation”’. The Cobb-Douglas produc-
tion function, the linear production function, the Leontief
production function, the variable elasticity of substitution
('VES) production function and the transcendental loga-
rithmic ( Trans-log) production function are often used to
analyze flexibility'® . Among these methods, the Trans-
log production function is the most popular function used
to analyze traffic problems. Thus, the Trans-log function
is adopted in this paper to study the difference between
the situations with and without considering the combined
influence of multifactors. The model with the best fitting
degree is chosen as the SPF. Then the SPF is checked by
the real traffic accident data.

1 Model Format and Basic Segment Definition

In this paper, the model format is as"”

Ne.x = NSPF.Yx CMFAADT,XCMF : 'CMFligm,x ( 1)

lane,x

where N, is the predictive model estimate of the crash
number for a specific year on site type x;Ngy , is the pre-
dicted average crash number determined by the SPF on
site type x; CMF ;. ---CMF . .
tion factors specific to site type x.

The basic segment for SPF is defined as follows.

Lane number: Two-way 4-lane;

Lane width; 3.75 m;

Hard shoulder: On both sides;

Median separator: Yes;

Crash barrier; On both sides;

Lighting: None;

AADT (two directions) ; No more than 5.76 (10* pcu/d) ;

Open to traffic duration; No less than two years and no
reconstruction in two years.

2 Data

are the crash modifica-

In order to acquire sufficient samples for a meaningful
statistical analysis, six major sources are used: the Na-
tional Statistics Annual Report of Road Traffic Accidents
(NSARRTA,2013) "' | the Statistical Bulletin of Trans-
portation Industry Development ( SBTID, 2013), acci-
dent data from the Traffic Management Committee of
Guangdong Province ( MCGP ), accident data from dif-
ferent Traffic Police Detachments ( TPD, 7 freeways,
593.099 km in total) , accident data from different Free-
way Administrations and Maintenance Centers accordingly

(FAMC, 7 freeways, 593. 099 km in total), and addi-
tional results provided by other scholars. As for the sample
size, see Tab. 1.

Tab.1 Sample source and size

Observation Freeway  Accident
Source .

period length/km  amount

MCGP 2008 to 2012 2 200.779 135 498
NSG freeway TPD & FAMC 2008 to 2012 72.00 1428
GZIC freeway TPD & FAMC 2008 to 2012 50.74 3115
JZN freeway TPD & FAMC 2006 to 2012 109. 84 11 209
GH freeway TPD & FAMC 2008 to 2012 155.306 3441
KY freeway TPD & FAMC 2008 to 2012 125.20 2 351
GZBH freeway TPD & FAMC 2007 to 2012 21.652 12 850
SM freeway TPD & FAMC 2008 to 2011 58.361 719

3 Method

The basic function of the Trans-log NB production

function is as follows!" ™.

InY = q, +a,InK + o, InL + o, (InK)* + o, (InL)* +
ayInKInL

where Y is the dependent variable; K, L are the explana-
tory variables; and «,, o, @, , @y, o, o, are the esti-
mated parameters.

In this paper, the annual average daily traffic ( AADT)
Q, and the segment length L, are chosen as explanatory
variables. If not taking the influence between these two
variables into consideration, the NB function is as fol-
lows

Inw, +ay, +o,In(Q;) +a,In(L;) (2)

where y; is the estimate of crash number for a specific
year of segment i; Q, is the AADT for a specific year of
segment i; a,(k=0,1,---,5) are the estimated parame-
ters.

If taking the influence between these two variables into
account, the trans-log NB function is as follows:

Inw, = +a,In(Q,) +a,In(L,) +a,[In(Q,)]* +
a4[1n(Li):|2+a51n(Qi)1n(Li) (3)

Thus, six models are used as shown in Tab.2. Models
1 to 4 do not take the influence between two variables into
account and Models 5 and 6 consider the influence. Mod-
els 1, 2 and 5 are NB regression models and others are
GNB regression ones.

Tab.2 Models adopted and their estimated parameters

Model Basic function form Estimated parameters
Model 1(NB) Inp; =ag +a;In(Q;) +a,In(L;) Qy,Q,0,0
Model 2(NB)  Iny; =ay +a;In(Q;) +In(L;) g, ,B
Model 3(GNB)  Iny; =ap + 0, In(Q;) +a,In(L;) ,B; = elAo+Ailnki) Qa0 ,Ag,A A0
Model 4(GNB)  Inu; =y +a;In(Q;) +1In(L;) ,B; =elAorrilnkd) @, ,Ag,A Ao

Model 5(NB)

Model 6( GNB) 8, = oAty

0‘4[1n(Li)]2 +asIn(Q;)In(L;)
O‘4[1n(L[)]2 +asIn(Q;)In(L;),

Inp; =ay +oyIn(Q;) +a,In(L;) +az[In(Q) 1% +
Ing; =ay +0,In(Q;) +a,In(L;) +a3[In(Q;)]% +

Qo0 50,03 ,0y ,05,3

Qo 0,00 , 03,0 ,Qs 540,44

Note: B is the excessive dispersion coefficient of the NB or the GNB model.
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Akaike information criterions ( AIC) (s , Bayesian in-
formation criterions ( BIC) and Pseudo R2 are adopted to
test the accuracy of the prediction models. Cumulative re-
sidual and excessive dispersion coefficients are also used
to evaluate the fit goodness of the models.

4 Analysis Process and Results
4.1 Models discussion

Estimated parameters which have been demarcated by
survey data and parameters which reflect fit goodness have

also been calculated. The results are listed in Tab. 3.

The results shown in Tab. 3 indicate that the interactive
influence between two variables is clear. Thus, Model 5
and Model 6, which take the interactive influence into
consideration, have better fitting, particularly compared
to Model 2 and Model 4. However, the fitting goodness
difference among Models 1, 3, 5 and 6 is not very obvi-
ous, so further analysis is carried out to determine which
one is more accurate. In the scope of the definition condi-
tion, the crash number can be predicted and the estimated
results are shown in Fig. 1 and Fig. 2.

Tab.3 Estimated and statistical parameters

Estimated parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
g -0.11 -0.69 -0.10 -0.70 -0.13 -0.11
) 0.48 0.62 0.47 0.62 0.87 0.85
a, 0.51 1.00 0.50 1.00 0.10 0.09
a3 -0.23 -0.22
oy 0.20 0.20
as 0.06 0.06
Ag -1.21 -0.76 -1.17
Ay 0.16 -0.06 0.08
B 0.353 0.441 0.3373
AIC 2 482.864 2 540. 805 2 484.392 2 542.730 2 479.306 0 2 481.200
BIC 2 483.182 2 541.043 2 484.790 2 543.048 2 479.863 0 2 481.835
Pseudo R’ 0.034 0.022 0.033 0.022 0.0379 0.036
LR chi2 87.480 57.900 83.820 57.960 97.040 93.020
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Fig.1 Variation tendency of estimated results with AADT under different L. (a) L=0.5km; (b) L=3.0km; (c) L=5.0 km;(d) L

=8.0 km

The results shown in Figs. 1 and 2 show no difference
between Models 1 and 3 or Models 5 and 6. As for Mod-
els 1&3 and Models 5& 6, the results reveal a remarkable
difference.

When the segment length is certain, crashes increase
with AADT, as shown in Fig. 1. The increase tendency
shows that Models 5 and 6 have a clear increase with
AADT when the AADT is less than 3.5 x 10* pcu/d,
however, the increase tendency is relatively gradual when

AADT is more than 3.5 x 10* pcu/d. In comparison with
Models 5 and 6, the increase tendency of Models 1 and 3
appears to have uniform variations. The survey data
shows that there is one point after which the tendency
changes. This may be due to the fact that with the in-
crease in the traffic volume, speed and driving space de-
crease, resulting in fewer crashes. Thus, Models 5 and 6
reveal a more accurate picture.
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Fig.2 Variation tendency of estimated results with segment
length under different AADTSs. (a) 0.5 x10* pcu/d;(b) 1.5 x 10*
peu/d; (c) 3.5 x10* pcusd; (d) 5.76 x10* pcu/d

The results shown in Fig. 2 with respect to segment
length are not surprising. When AADT is certain, crashes
increase with the segment length. The increase tendency
also shows that Models 5 and 6 have a turning point at the
length of 4.5 km. It reveals that the traffic flow tends to
be steady in the same segment after several minutes’ driv-
ing. So, the crashes will not increase as much as before.

In conclusion, Models 5 and 6 show a good corrobora-
tion with actual reality. Thus, the prediction models,
Model 5 based on NB regression and Model 6 based on
GNB regression have taken the interactive influence into
consideration much better than others.

4.2 Discussion of NB Model 5 and GNB Model 6

To examine these two models in more detail and test
their accuracy, the cumulative residual and excessive dis-
persion coefficients are introduced to evaluate these two
models.

1) Cumulative residual

Cumulative residual can be calculated by

C, = 2 Yi =Y (4)

=y 9 +B()3i)2

where C, is the cumulative residuals; y, is the predicted
values; ¥, is the mean value of predicted results;n is the
sample amount; B is the excessive dispersion coefficient.

Cumulative residuals will be centered at zero if the
model fit is correct and the maximum threshold is the
square root of the sample quantity, that is ( —25. 298,
25.298 ). Cumulative residuals can be used to test the
above NB and GNB models. The results in Fig. 3 show
no difference between the two models. Most of the points
are within the threshold scope and near the x-axis. Few
residuals are less than the minimum threshold ( - 25.
298). Thus, the two models are proved to be a good fit
and show no difference between each other.
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Fig.3 Cumulative residuals of Models 5 and 6

2) Excessive dispersion coefficient 8

The excessive dispersion coefficient of the NB model is
constant and that of Model 5 is 0. 337 3. As for the
GNB, the excessive dispersion coefficient is the function
of the explanatory variable InL, which can be expressed
as

B:e()\ﬁ)..lnL) (5)

where A, A, are the estimated parameters. In the exam-
ple, A, = —1.17, A, =0.08. The regression results are
shown in Tab. 4 and Fig. 4.

Further study discovers that the excessive dispersion

Tab.4 Statistical index of the excessive dispersion coefficient
of Model 6

Excessive ~ Sample Standard Minimum Maximum
dispersity  quantity deviation value value
B 640 0.3320 0.0159 0.2936  0.3727
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Fig. 4  Excessive dispersion coefficients at different interval
distributions of Model 6

coefficient of Models 5 and 6 are almost equal. It shows
that the mean dispersion coefficient of Model 6 (0. 332
0) is slightly better than that of Model 5 (0.337 3). In
conclusion, testing by cumulative residual and excessive
dispersion, the two models demonstrate a good fit and
there is almost no difference. They can both be used as
the SPF of basic segment. In this paper, Model 6
(GNB) is adopted as SPF for further study.

4.3 Results

According to the above analysis, the following model
is proposed as the freeway basic segment defined in Sec-
tion 1:

N [ =0.11 +0.85INAADT, +0.09InL, 0. 22(InAADT,)? +0.20(InL,)* +0. 06InAADT InL,]

sprx — €

(6)
where AADT, is the AADT of basic segment x, 10" pcu/d;
L is the length of basic segment x, km.

In order to test the model, crashes estimated by Eq.
(6) are compared with the actual data (see Tab.5).
From Tab. 5, it can be seen that the prediction crashes are
very close to the actual values. It therefore proves that the
SPF based on GNB can predict crashes correctly.

Tab.5 Comparison of the crashes estimated by Eq. (6) with
the actual data

AADT/ Predicted Actual

L/km (10* pcu - d~')  value value Error
2.853 0.344 9 0.802 1 0.198
1.036 0.344 9 1.112 2 0. 888
2.403 0.344 9 0.907 0 -0.907
0.601 0.344 9 0.789 1 0.211
0.734 0.344 9 0.766 1 0.234
1.520 0.344 9 0.759 1 0.241
0.616 0.344 9 0.875 1 0.125
0.697 0.344 9 0.771 0 -0.771
0.775 0.344 9 0.822 1 0.178
0.736 0.344 9 0.759 1 0.241
1.408 0.180 0 0.415 0 -0.415
Std error 0.540 0 2.000 0.156
Max 1.112 0 2.000 -0.907

Total 16.837 0 15.000

5 Conclusion

The analysis sheds light on the safety performance
function (SPF) of the freeway basic segment. With de-
tailed analysis and study, some conclusions are drawn as
follows :

1) With enough samples and data, the effective use of
the GNB model in analyzing the interactive influence of
explanatory variables and predicting crashes on the free-
way basic segment has been proved.

2) The contribution of interactive influence between
the NB model and the GNB model is compared. The re-
sults show that when interactive influence is taken into
consideration, the prediction results of the crash increase
tendency becomes more accurate by using AADT or the
length.

3) Furthermore, comprehensive study proves that when
considering the interactive influence, the NB and GNB
models have almost the same good fit when estimating the
crashes, among which the GNB model is slightly better.
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