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Abstract: A cascaded projection of the Gaussian mixture
model algorithm is proposed. First, the marginal distribution
of the Gaussian mixture model is computed for different
feature dimensions, and a number of sub-classifiers are
generated using the marginal distribution model. Each sub-
The cascaded

structure is adopted to fuse the sub-classifiers dynamically to

classifier is based on different feature sets.

achieve sample adaptation ability. Secondly, the effectiveness
of the proposed algorithm is verified on electrocardiogram
emotional signal and speech emotional signal. Emotional data
including fidgetiness, happiness and sadness is collected by
induction experiments. Finally, the emotion feature extraction
method is discussed, including heart rate variability, the
chaotic electrocardiogram feature and utterance level static
feature. The emotional feature reduction methods are studied,
including principle component analysis,
selection, the Fisher
information coefficient. The experimental results show that the

sequential forward

discriminant ratio and maximal
proposed classification algorithm can effectively improve
recognition accuracy in two different scenarios.
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arious machine learning algorithms have been stud-
V ied in real world applications. Affective recognition
is one of the emerging fields that benefit significantly
"1 proposed
various ways to extract emotional features in the physical
signal space.
learning algorithms, we can map the signal features to the

from learning algorithms. Previous studies'
By using signal processing and machine

psychological emotional state and recognize people’ s e-
motions. The most common sensors we can use to collect

the emotional signals are microphones, cameras, and
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physiological body sensors.

The speech signal recorded by a microphone or micro-
phone array can be used for speech emotion analysis.
Speech emotion modelling algorithms have been studied
by many researchers from various backgrounds. In the re-
cent researches on the FAU Aibo Emotion Corpus'*, the
( GMM ) -based
achieved promising results’”'. The GMM is suitable for

Gaussian mixture model classifiers
modelling the static emotional features at the utterance
level. For an alternative way to monitor people’s emo-
tional state, we can build an emotion recognition system
based on electrocardiogram ( ECG) signals. A body sen-
sor is commonly used in many health care solutions and it
is easy to carry. Further research progress in the field of
health monitoring can be found in the survey in Ref. [6].

There are still many challenges in emotion model-
ling". In this paper, we propose an optimization frame-
work that can be generalized to both speech and ECG
emotion recognition. There are two reasons that we
choose to use these two types of data. First, they are
commonly available in human-computer interaction. Sec-
ondly, they show different characters of data distribu-
tions, which is suitable for verifying the generalizing abil-
ity of our algorithm. These two types of signals are easy
to transmit in wireless channels, requiring less bandwidth
in comparison with video signals. The sensors are also
simple to integrate in wearable systems.

In emotion recognition, some of the testing data may
be located far away from the training data in the feature
space. These sample points are likely to be misclassified
and often have low likelihoods.
classification is that not all of the selected features fit the

The reason for the mis-

testing sample. Some of the feature dimensions may lead
to the opposite decision in the classification stage. We
can improve the GMM classifier by selecting different
feature dimensions according to the individual testing
sample. In our method, feature selection is carried out af-
ter the training stage, which is the main difference from
the traditional learning framework. The emotional data is
often insufficient in training, while the testing dataset of-
ten contains patterns that are not well learnt. Therefore,
some of the selected features in the training stage may be

unsuitable for the testing sample. In the GMM-based



Cascaded projection of Gaussian mixture model for emotion recognition in speech and ECG signals 321

classifier, each feature dimension corresponds to a mar-
ginal probability distribution that can be used to classify
the current testing sample. Not all of the trained features
contribute in the same way, and some of them lead us to
wrong decisions. Therefore, if we remove these unsuita-
ble feature dimensions, we can obtain a projected GMM
distribution, with a high likelihood for improved recogni-
tion.

In related literature, the GMM is adopted for clustering
gene expression microarray data'. In other fields, such
as networks, Singh et al. "’ used the GMM for statistical
modeling of the loads in distribution networks. The ex-
pectation maximization (EM) algorithm is used to obtain
the GMM parameter. In intelligent manufacturing, Chen
et al. """used the GMM for estimating the probability den-
sity function in multivariate statistical monitoring of batch
manufacturing processes, where principal component
analysis was not applicable. In computer vision, Jian et
al. """ used the GMM for point set representation in a reg-
istration framework, which led to a reformulation of the
registration problem as aligning two Gaussian mixtures.
In event detection, Kamishima et al. "* used the GMM to
model the relationship between low-level features and vis-
ual events when the training data was insufficient.

1 Improved Gaussian Mixture Model

1.1 Feature reduction approaches for GMM

Feature reduction is an important step for GMM-based
modelling. The mixture number, feature dimensions, and
training size need to be set carefully. When training with
a small sample size, the mixture number should not be
too large and feature dimensions need to be reduced. If
the mixture number is too large, the GMM models may
be over-fitted for the training data.

The traditional feature reduction methods are used be-
fore the training stage. In this paper, we propose a fea-
ture reduction method after the training stage. We evalu-
ate the features by GMM likelihoods at the recognition
stage and reduce the worst few features. Therefore, the
features used in training are fixed, and the features used
in recognition are dynamically adjusted according to the
individual testing sample. We then take the marginal
probability distribution of the GMM as the projection of
the original model and propose a cascaded structure for
classifier fusion and recognition.

1.2 Simple projection of Gaussian mixture model

For the #-th sample in recognition, the entire selected
features before the training stage can be represented as X,
={x,, X,, ..., X, }. Ranking the distance between the fea-
ture point of current sample and the mean value of the
closet Gaussian mixture in each dimension, we have

S, =reorder(X,) =reorder(min(X, -U, )) (1)

where ¢ denotes the feature index; i denotes the Gaussian
mixture in all the emotion models; S, represents the same
features of the current sample with reordered feature di-
mensions. At the recognition stage, assume that D — C
features are valid for all testing samples, while only C
features for the current sample should be reduced. Omit-
ting the last C features in the ranked feature vector, we
have a reduced dimension space,

Xr* :S’[I(DC)x(DC)] (2)

OCX(DfC)

Since we will propose a more sophisticated algorithm in
the CPGMM with the ability of exploring and selecting
feature dimensions in a maximum likelihood (ML) fash-
ion, the parameter C in the PGMM is set to be 1 for the
sake of simplicity.

By projecting the GMM parameters A to the reduced di-
mensions, the GMM parameters can be reduced in the
same way.

1
U =reorder(U,) [ (3)

(D-0) x(ch)]

0

Cx(D-0)

I, ovn-
2 =Ho-oxw-0 OCX(D—C)](reOrder(Zi)[ (D=0 (D C)])

0C><(D—C)

(4)
The GMM posterior probability is calculated as

M

; 1
X'1A) = E T oA o s
p(X, ) a 2 )D/2 ‘ Si* 1

i=1

(5)
exp{ (X, - U5 (X - U)]

1.3 Cascaded projection of Gaussian mixture model

The simple projection of the GMM provides us with a
basic feature reduction method at the recognition stage. In
this section, we further explore a cascaded structure of
multiple sub-classifiers. Each sub-classifier is a projection
of the original GMM with reduced dimensions.

If we remove one dimension from the original GMM,
we may obtain the one-dimensional projected GMM,
which is a marginal probability distribution. The likeli-
hood of the current testing sample in the one-dimensional
projected GMM is determined by the dimension we re-
moved. We then search for the maximum likelihood
among all the marginal probability distributions. If the
achieved likelihood is greater than that of the original
GMM, we can improve the classification performance. In
an iterative fashion, we go to the next level of the projec-
ted GMM by removing more dimensions.

The marginal probability distribution function of a
Gaussian distribution is still a Gaussian distribution with a
corresponding mean vector and covariance matrix. Sup-
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pose that X follows a Gaussian distribution:
X_[X1]~N([U,] [211 X, ) 6)

XZ U2 | 2 21 Z 22
where the feature vector X can be represented in two
parts, X, and X,. Either X, or X, consists of an arbitrary
number of dimensions. When we remove X, from the fea-

ture vector X, X, still follows multi-variant Gaussian dis-
tribution:

XlNN(UUZ]]) (7)

We can easily extend this property to the GMM and cal-
culate the projection of the GMM with very little compu-
tational burden.

A cascaded framework is proposed to fuse the sub-clas-
sifiers and maximize the likelihood in an iterative fash-
ion. The core idea of our proposed algorithm is as fol-
lows. First, for each of the testing sample, we use a
threshold to validate whether the current GMM likelihood
is satisfactory; if not, go to the next level of the projec-
ted GMM by removing one more dimension. Secondly,
we find the maximum likelihood of the projected GMMs
by exploring all the possible combinations of the feature
dimensions. Thirdly, if the maximum n-dimensional pro-
jected GMM has a greater likelihood than the current one,
we replace the current GMM model, otherwise we use the
current GMM.

The threshold in our proposed algorithm needs to be set
empirically. An intuition to guide our exploration of this
parameter is that: If the GMM classifier is well-trained,
we do not need to calculate deeper levels of the cascaded
structure.

Therefore, we have two ways to decide whether the de-
cision should be made using the current likelihood or the
next level of the projected GMM likelihood:

1) A simple solution that uses the same threshold for
all cascaded levels;

2) A threshold that depends on the GMM likelihoods of
the current testing sample.

We find that the later one has an obvious advantage:
the threshold is more stable. If we use the same threshold
for all cascaded levels, we need to adjust the threshold
each time when we try to fit our algorithm to a new appli-
cation. Using the following empirical equation, which
takes the GMM likelihoods of each class into considera-
tion, we can achieve a more stable threshold:

T, ==0.1(log(C}) + log(max(L,}) -
log( 3 (log(L) ~log(L))" ) ) g

where K is the total number of emotion classes; i, j are
the indices of emotion classes; L, is the normalized likeli-
hood.

S a,b(U, | A})

IsmsM

where b is the Gaussian distribution; m is the index of
Gaussian mixtures; M is the total mixture number; a,, is
the weight of each Gaussian mixture; U, is the mean vec-
tor of the corresponding Gaussian distribution. In our ex-
periment, when the threshold 7, >1, go to the next level
of the cascaded structure of the GMM projection.

The pseudo code of the proposed algorithm is shown as
follows.

Algorithm 1 Classification algorithm based on casca-
ded projection of the Gaussian mixture model

Input: Speaker emotional feature vector X; Gaussian
mixture model A, (k =1, 2, ..., K) denoting the emotion
class.

Output: Emotion class label e, .

Calculate the likelihood using the complete GMM: L,
=p (X[ 1p).

If T, < =1, Then end program and output e, =
arg max,{L,}.

For d=D to 1, D is the total dimension of the feature
space, do

Remove the i-th dimension and project the Gaussian
mixture model on the rest of the dimensions: A, = {a,,
U‘km )Lk .1, where m is the index of Gaussian mixtures;
Find the corresponding projected GMM with the maxi-
mum likelihood:

i" =arg max,{L, =p(X' [ A)}

where i* denotes the selected model with the maximum
likelihood and X' is the feature vector with the i-th dimen-
sion reduced;

Update the selected model A, = A}",

Update the feature vector X = X'

If T,< =1orL, >L"(where L" is the likelihood be-
fore projection),

Then break,

Else update the maximum likelihood L™ =L,.;

End for.

Use the selected model (A, ) for classification: e, =
arg max, {p(XIA])}.

2 Application in ECG Emotion Recognition
2.1 Database

Data collection is a key step for building an emotion
recognition system. Many of current emotion recognition
algorithms depend on the quality of datasets. We adopt
several simulation methods for inducing the negative emo-
tions, including noise stimulation, math calculation and
comedy video watching. The hardware devices are con-
nected to a PC using wireless ZigBee protocol. GUI inter-
face is implemented using Labview. ECG signals can be
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collected remotely in a laboratory environment. Detailed
information can be found in Ref. [13].

Under noise stimulation, the subject is required to work
on a set of math calculations. The negative emotion
(fidgetiness) is then induced. The positive emotion ( hap-
piness) may be induced by watching comedy movie
clips. Subjects participated in out experiment include five
male volunteers and five female volunteers. The ages of
the subjects range from twenty years old to forty years
old, and all of the volunteers were not on medication re-
cently.

We choose fidgetiness and happiness as our target emo-
tions, because they cover both aspects of the valence di-
mension and they are of great practical value in real world
applications. After the induction experiment, each subject
is given a self-evaluation chart to report their perceived
emotional states. The intensity of the target emotion is
scaled into five levels (1,3,5,7 and 9). The ECG emo-
tion data with self-evaluation level equal to and higher
than 5 is accepted.

2.2 ECG feature analysis

We record the typical examples of the ECG signals un-
der three different emotional states. Based only on the
time-domain waveform, it is difficult to find the differ-
ences among the three emotional states. Therefore, we
need to extract and construct various statistic features for
quantitative emotional analysis.

Heart rate is the number of heartbeats per unit of time,
and it is a basic feature of the ECG signal. RR interval
refers to R wave to R wave interval. It represents the
temporal heart rate and can be used for HRV (heart rate
variability) analysis.

HRYV feature is extracted by the frequency domain anal-
ysis method. Based on the RR signal, the power spectral
density ( PSD) is calculated using the auto-regressive
model (AR). The resulting PSD provides the basic infor-
mation of energy change (Y axis of power density) along
with the frequency change (X axis of frequency). It is
then divided into low frequency domain (0.01 to 0. 15
Hz) and high frequency domain (0. 15 to 0.4 Hz). Low
frequency and high frequency features are calculated
based on the power percentage. It can be calculated as

DWHE

Ry = (10)

n

T

Z Z,)[ff(u) - f.(w)]’
where R, is the heart rate variability; T is the period of
the harmonic wave; u is the time index; n is the number
of the periods; f;(u) is the wave within one period; f,(u)
is the harmonic component.

We further extract the chaotic features under various
emotional states, which are shown in Tab. 1. As shown

in Fig. 1, we construct the two-dimensional phase spaces
of ECG signals corresponding to fidgetiness, happiness
and neutrality. In the two-dimensional phase spaces of
ECG signals, we can observe the chaotic character of
ECG signals under three emotional states. We adopt the
G-P ( Grassberger and Procaccia) algorithm'™ for the cal-
culation of the relevant dimension, in which the embed-
ded dimension m is set to be 3 to 9, as shown in Fig. 2.

Tab.1 Chaotic ECG features

Index Chaotic features
1 Mean relevant dimension
2 Maximum relevant dimension
3 Minimum relevant dimension
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Fig. 1
states and white Gaussian noise. (a) Fidgetiness; (b) Happiness;
(c) Neutrality

Depiction of phase space under various emotional
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Fig.2 Depiction of calculating relevant dimensions using the

G-P algorithm under various emotional states. (a) Fidgetiness;
(b) Happiness; (c) Neutrality

The maximal information coefficient (MIC) is a meas-
ure of the strength of the linear or non-linear association
between two variables x and y. In this paper, we apply
MIC to both ECG and speech features.

MIC is based on the idea that if a relationship exists be-
tween two variables, a grid can be drawn on the scatter-
plot of the two variables that partitions the data to encap-
sulate that relationship'®'. We can calculate the MIC of
the acoustic feature and the emotional state by exploring
all possible grids on the two variables. We compute every
pair of integers (x, y), and the largest possible mutual in-
formation is achieved by any x-by-y grid. Secondly, for a
fair comparison, we normalize these MIC values between
all acoustic features and the emotional state. A detailed
study of MIC can be found in Ref. [15]. Since MIC can
treat linear and non-linear associations at the same time,
we do not need to make any assumption on the distribu-
tion of the original features. Therefore, it is especially

suitable for evaluating a large number of emotional fea-
tures. We apply MIC to measure the contribution of these
features in correlation with emotional states. Finally, a
subset of ECG features is selected for our emotion classi-
fier, as shown in Tab. 2.

Tab.2 Selected ECG emotional features using MIC

Index Top ranked ECG emotional features

—_

Maximum of the RR interval

Spectral energy ratio of the high and low frequency bands of the HRV
Mean of the RR interval

Range of the T wave energy

Mean of the T wave energy

Mean of the R wave energy

Mean of the first order difference of the RR interval

Spectral energy of the low frequency band of the HRV

O 0 N AN AW

Mean of the relevant dimension

)

Standard variation of the second order difference of the T wave energy

3 Application in Speech Emotion Recognition

3.1 Database

Besides the ECG data, we also collected emotional
speech data. Fifty-one university students ( the voluntary
subjects) participated in the recording of the emotional
speech. Their ages were between twenty and thirty-five
years old. The subjects are all native Chinese speakers.
The language used in the recording is Mandarin Chinese.
A large number of speakers is necessary, since we aim to
build a speaker-independent emotion recognition system
for future call-center applications. Target emotions in-
clude happiness, neutral, sadness and fidgetiness.

We induced the target emotions in a controlled lab en-
vironment. Neutral speech was the first to be recorded,
before any eliciting experiments. We induced fidgetiness
by noise stimulation and repetitive boring tasks, such as
math calculations. We induced sadness by the imagina-
tion technique, in which the subject was required to recall
a sad past experience. We also induced positive emotion
(happiness) by comedy movie clips. During the emotion
eliciting experiments, the subject stayed in a private room
and he/she was given enough time to rest between the
two eliciting experiments.

3.2 Speech feature analysis

In our approach, basic speech features are extracted,
including pitch, short-time energy, formant, MFCC(Mel
frequency cepstrum coefficient), etc. The static features
over the entire utterance are then constructed by calculat-
ing the mean, the maximum, the minimum, and the vari-
ance of the basic features as well as the first-order and the
second-order of the basic features.

At the feature selection stage, various feature dimen-
sion reduction algorithms are evaluated in combination
with a GMM-based classifier. In the speaker-independent
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test, we compared the following feature selection meth-
ods: principal component analysis (PCA), sequential for-
ward selection ( SFS), Fisher discriminant ratio ( FDR)
and maximal information coefficient (MIC). The average
recognition rates are shown in Tab. 3. The optimized fea-
ture set (ten dimensions) achieved by SFS is shown in
Tab. 4.

Tab.3 Recognition accuracy using various feature selection

methods

GMM mixture number EM iteration PCA  SFS FDR  MIC
16 40 0.67 0.75 0.70 0.71
32 40 0.72 0.82 0.74 0.76
64 40 0.68 0.76 0.71 0.76

Tab.4 Optimized feature set using SFS

Index Feature
1 Mean of second formant frequency
2 Maximum of short-time energy
3 Minimum of first formant frequency
4 Pitch jitter
5 Maximum of pitch
6 Maximum of ninth-order MFCC
7 Minimum of first-order difference of pitch
8 Mean of fifth-order MFCC
9 Variance of twelfth-order MFCC
10 Mean of pitch

As we can see from Tab. 3, SFS brings the highest rec-
ognition rate, where the GMM mixture number is set to
be 32. However, SFS depends on the specific classifier
used for classification. Principal component analysis is an-
other popular method in feature reduction, and it cannot
guarantee the discrimination ability of the optimized fea-
ture set. Among a large amount of the original acoustic
features, many may be correlated to the phonetic informa-
tion. Therefore, the wrapper methods, such as SFS, may
outperform the filter methods, i.e. PCA, FDR, MIC.

4 Experimental Results

In the ECG experiment, the mixture number of the
GMM is set to be 6. There are 300 ECG data segments for
each emotion class in the training dataset. In the test data-
set, there are 100 samples for each emotion class. The rec-
ognition results using the GMM, the PGMM and CPGMM
are shown in Tab.5 to Tab.7, respectively. By using the
proposed PGMM and CPGMM, the average recognition
rates are improved by 2% and 4. 3%, respectively. Notice
that the recognition rates are constantly improved among
all three types of emotional states.

Tab.5 ECG emotion recognition accuracy with GMM

Emotion samples Fidgetiness Happiness Neutrality
Fidgetiness samples 0.72 0.13 0.15
Happiness samples 0.10 0.75 0.15
Neutrality samples 0.19 0.12 0. 69

Tab.6 ECG emotion recognition accuracy with a simple
projection of GMM

Emotion samples Fidgetiness Happiness Neutrality
Fidgetiness samples 0.74 0.13 0.13
Happiness samples 0.10 0.76 0.14
Neutrality samples 0.17 0.11 0.72

Tab.7 ECG emotion recognition accuracy with a cascaded
projection of GMM

Emotion samples Fidgetiness Happiness Neutrality
Fidgetiness samples 0.76 0.11 0.13
Happiness samples 0.08 0.78 0.14
Neutrality samples 0.14 0.11 0.75

For the speech emotion recognition test, training and
testing data sets are organized into cohorts suitable for the
leave-one-out testing method. A set of high quality sam-
ples (5 699 utterances) including fifty-one speaker’s are
used in the speaker-independent speech emotion recogni-
tion experiment. One of speakers’ data is selected for tes-
ting and the remaining speakers’ data is used for training.
As shown in Tab. 8, the overall speaker-independent rec-
ognition rate is improved using the PGMM and CPGMM.

Tab.8 Speaker-independent speech emotion recognition results

Recognition rate

Recognition Testing Training . Simple Cascaded
. . Gaussian . L.
results s1ze size ixt del projected projection
mixture m
Muremodel GMM  of GMM
Average 111.7 5587.3 0.756 5 0.790 4 0.816 1
Std 32.494 8 32.494 8 0.071 9 0. 069 2 0.069 1

Compared with the basic GMM, the recognition per-
formance is improved constantly using the simple PGMM
and CPGMM, as shown in Tab. 6 and Tab. 7. The de-
signed algorithms are adapted to testing samples and bring
an improved classification. Different emotion types are
modelled, and various subjects are involved in these
tests, showing that our algorithms do not rely on emotion
types nor on subject numbers.

5 Conclusion

In this paper, we discuss the emotional feature adapta-
tion in the GMM algorithm. In the traditional training and
testing framework, feature selection is carried out before
the modelling stage, which poses the question of subject
dependency. Various individuals may have their own hab-
its of emotion expression, and selecting features adaptive-
ly may be beneficial in real world application. Therefore,
we propose the simple projection of the GMM and the
cascaded projection of the model to improve the adapta-
tion ability of the recognition system.
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