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Abstract: This paper focuses on the intrusion classification of
huge amounts of data in a network intrusion detection system.
An intrusion detection model based on deep belief nets ( DBN)
is proposed to conduct intrusion detection, and the principles
regarding DBN are discussed. The DBN is composed of a
multiple unsupervised restricted Boltzmann machine (RBM)
and a supervised back propagation (BP) network. First, the
DBN in the proposed model is pre-trained in a fast and greedy
way, and each RBM is trained by the contrastive divergence
algorithm. Secondly, the whole network is fine-tuned by the
supervised BP algorithm, which is employed for classifying
the low-dimensional features of the intrusion data generated by
the last RBM layer simultaneously. The experimental results
on the KDD CUP 1999 dataset demonstrate that the DBN using
the RBM network with three or more layers outperforms the
self-organizing maps ( SOM) and neural network ( NN) in
the DBN is an efficient
approach for intrusion detection in high-dimensional space.

intrusion classification. Therefore,
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‘ x J ith the growth of network technologies and appli-

cations, computer network security has become a
crucial issue that needs to be addressed. How to identify
network attacks is a key problem. As an important and
active security mechanism, intrusion detection (ID) has
become a key technology of network security, and has
drawn the attention of domestic and foreign scholars
world-wide.
chine learning methods is a major research project in net-
work security, which aims at identifying unusual access

or attacks on internal networks'" .

Intrusion detection based on different ma-

In literature, many machine learning methods have
made great achievements in IDS, such as the NN™ | sup-

port vector machine (SVM) Pl and SOM"™ . These meth-
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ods have been introduced to the field of intrusion detec-
tion by previous researchers. Most of traditional learning
machine methods with shallow architectures have one hid-
den layer (e. g., BP) or no hidden layer (e. g., maxi-
mum entropy model) .

Owing to limited samples and computing cells, the ex-
pressive power of shallow learning methods for complex
function is limited, and its generalization ability for com-
plex classification problems is subjected to certain con-
B! The continuous collection of traffic data by the
network leads to problems concerning the huge amounts

straints

of data in network intrusion detection and prediction.
Therefore, how to develop an efficient intrusion detection
model oriented towards huge amounts of data is a theoret-
ical and practical problem that should be solved urgently.

The deep learning model used in large-scale data analy-
sis has an outstanding performance, which is a promising
way of solving intrusion detection problems. The DBN
with deep architectures is proposed by Hinton et al. ",
and it uses a learning algorithm which greedily trains one
layer at a time with an unsupervised learning algorithm
employed for each layer'”. Bengio et al.'” followed the
research on deep learning, which shows the strong capaci-
ty of learning essential characteristics of data sets from a
few samples. Although DBN can be trained with unla-
beled data, DBN is successfully used to initialize deep
feedforward neural networks.

In this paper, an intrusion detection model based on the
greedy layer-wise DBN is presented. In order to improve
the performance of DBN, its parameters are explored, in-
cluding the depth of DBN, the number of nodes in the
first hidden layer, the number of nodes in the output layer
and so on. Finally, the efficiency of DBN is evaluated on
the KDD CUP 1999 dataset. The DBN outperforms SOM

and NN in detection accuracy and false positive rate.
1 Proposed DBN Model for Intrusion Detection

An overall framework of the network intrusion detec-
tion model based on DBN is trained in three stages, as
shown in Fig. 1. First, the symbolic attribute features in
KDD CUP 1999 dataset'® are numeralized and subse-
quently normalized. Then, a DBN is trained on the
standardized dataset and the weights of the DBN are used
to initialize a neural network. This pre-training procedure
consists of learning a stack of RBMs with the unsuper-
vised contrastive divergence algorithm. The learned fea-
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ture activations of one RBM are used as the data for train-
ing the next RBM in the stack. The nonlinear high-di-
mensional input vector is sampled as its corresponding op-
timal low-dimensional output vector. Finally, a DBN is
constructed by unrolling the RBMs and fine-tuned by
using the BP algorithm of error derivatives according to
the class labels of the input vectors. The obtained DBN
can be used to recognize attacks.
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Fig.1 The pipeline for training IDS

2 Deep Belief Network

The deep learning model attracts more attention from
researchers at home and abroad due to its outstanding
learning ability for the complex data'”. A deep learning
model containing multilayer hidden units is used to gradu-
ally establish the optimal abstract representation of the
raw input at the penultimate layer in Fig. 2. The repre-
sentative deep learning model is the DBN based on the
RBM in stacks. Learning DBN is a process of greedy lay-
er-wise training RBM.

The DBN'', which is a probabilistic generative model,
is a deep neural network classifier of a combination of
multilayer unsupervised learning networks named RBM
and a supervised learning network named BP"'. In a
DBN, the units in each layer are independent given the
values of the units in the layer above. Fig. 2 shows a
multilayer generative model, in which the top two layers
have symmetric undirected connections and the lower lay-
ers receive directed top-down connections from the layer
above. The bottom layer is observable, and the multiple
hidden layers are created by stacking multiple RBMs on
top of each other. The upward arrows represent the recog-
nition model,
generative model. In the greedy initial learning, the rec-

and the downward arrows represent the

ognition connections are tied to the generative connec-
tions. In the learning process of the generative model,

once the weight parameter W is learned, the original data
v can be mapped through W' to infer factorial approxi-
mate posterior distributions over the states of the variables
in the first hidden layer i,. A DBN with n layers can be
represented as a graphical model. The joint distribution of
the visible layer v and the hidden layer £,, for k =1:n, is
defined as

ch) = p L) TT POy R Py [h)
(1

p(v,hy, ...

LT iy ™" @] »

| |

| |

! Top layer I

| W |

| i i

:Hidden layer . ‘ . hn-l:

e T— _________ -
I s TN
@ @@ |
I I
! wil W | RBM
| |
| I
|

@00 @

|Recogniti0n weight WIT ‘ W, Generative weight :RBM

1000 O-Of

Fig.2 A graphical representation of a DBN and its parameters

In a bottom-up process, the recognition connections of
DBN can be used to infer a factorial representation in one
layer from the binary activities in the layer below. In a
top-down process, the generative connections of DBN are
used to map a state of the associative memory to the raw
input. The DBN performs a non-linear transformation on
its input vectors and produces low-dimensional output
vectors. Using the greedy initial learning algorithm, the
original data are perfectly modeled and a better generative
model can be acquired.

The procedure of the training DBN consists of two pha-
ses. In the first phase, a layer-wise greedy learning algo-
rithm is applied to pre-train a DBN, and the RBM of
each layer is trained by the CD algorithm"”. To obtain
an approximate representation of the input vector v, the
following procedure is used. First, the posterior distribu-
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tion p(h, | v) is sampled from the first-level RBM, and
the visible variables v are sampled by the posterior distri-
bution p(v | h,). Subsequently, the hidden variables i,
are sampled repeatedly in the same way. The alternating
Gibbs samplings are repeatedly performed k times until an
equilibrium distribution is arbitrarily approached. The op-
timal representation 4, of the input vector v becomes the
input for learning the second-level RBM, and a sample #,
is computed. The former procedure is repeatedly executed

to train each RBM in a bottom-up way until A, , is com-

n-1
puted. A DBN is trained by using the layer-wise greedy
learning method which can be recursively repeated, and
millions of parameters can be learned efficiently. In prac-
tice, applying the CD algorithm can avoid the monstrous
overall complexity of training DBN, so this algorithm is
efficient.

In the second phase, the parameters of the whole DBN
are fine-tuned. The weights on the undirected connections
at the top-level RBM are learned by fitting the posterior
distribution of the penultimate layer. Using the BP learn-
ing algorithm, exact gradient descent on a global super-
vised cost function between the actual output vector and
the desired output vector can be performed in DBN. This
phase aims at obtaining the optimal parameters, which
corresponds to the minimized difference between the
above two vectors.

3 Restricted Boltzmann Machine

3.1 Model structure

The core block networks for the DBN are RBMs, each
of which is a two-layer neural network that consists of a
visible layer and a hidden layer. Each unit of the hidden
layer connects to all the units of the visible layer, and the
visible and hidden units form a bipartite graph with no
visible-visible or hidden-hidden connections. RBM is an
energy-based undirected generative model that uses a lay-
er of binary variables to explain its input data. The visible
variables are described as the characteristics of the input
data, and the hidden variables automatically generated
through machine learning often have no actual meaning.
The undirected model is a binary stochastic neuron,
meaning that each of them can latch onto one of two
states: on or off. This model is called RBM whose prob-
ability distribution obeys the Boltzmann distribution.

3.2 Inference of RBM parameters

RBM is an energy-based undirected generative model,
which is constructed from a set of visible variables v =
{v;} and a set of hidden variables h = {h,}, as shown in
Fig.3. Node i is in the visible layer, and node j is in the
hidden layer. A property of RBM is the lack of direct
connections within nodes of the same layer, while there
are connections between the visible layer and the hidden

layer. The visible units are conditionally independent giv-
en the hidden units states, and vice versa. Therefore, the
posterior distributions P(H|V) and P(VIH) are sampled
and factorized as

P(H|V) = []p(h v (D)

P(V |H)

h) (2)

—————

Hidden layer

Dichotomy structure

Visible layer

Fig.3 A graphical representation of RBM and its parameters

Given a visible v, a low-dimensional representation h
can be sampled by the posterior distributions p(h | v).
Therefore, given a hidden variable k, a new representa-
tion v can be sampled by the posterior distributions p(v |
h). Since h]. e {0, 1}, the binary hidden unit probabilities
are given as

p(h;

p(h,

1] =U(Zwuvi+a[)}

0lv) =1 -p(h, =1 (3)

Since the RBM is a completely symmetric derivation,
the binary visible unit probabilities are given as

pv, =11h) =o( Y wh +b)
7 } (4)
p(v, =0[h) =1-p(v, =1|h)
where o denotes the logistic sigmoid,
1
o(y) = > (5)
1+e

The visible units and the hidden units are assumed to be
the binary stochastic units. In an RBM, the energy func-
tion with every configuration of visible and hidden varia-
bles is defined as

E(v,h;0) = —vV'Wh-b"v—-a"h (6)

where W is the weight matrix between the visible variable
v and the hidden variable h; b is a visible variable bias; a
is a hidden variable bias; and the parameters 6 = {W, a,
b} of the energy function are learned. The probability of
any particular configuration of the visible and hidden units
is denoted by the following energy function:

p(v, h;0) — e “EB:0) -
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4 Learning by Minimizing Contrastive Diver-
gence

The optimal joint probability distribution can be ac-
quired with the Markov chain method on the condition
that the number of iterations is close to infinity. Howev-
er, it is difficult to guarantee fast convergence and deter-
mine the step size of the iteration.
process of log likelihood is the same as the minimization
process of the Kullback-Leibler (KL) divergence, which
is expressed as KL(P’ || P;)"". Here, P’ denotes the
posterior distribution of the data, and P, denotes the
equilibrium distribution defined by RBM. Contrastive di-
vergence proposed by Hinton"” is a fast RBM training
method. Instead of minimizing KL( P’ | P; ), the mini-
mized difference between KL(P’ || P;) and KL(P" ||
P;) is defined as

The maximization

CD =KL(P’ || P;) -KL(P, | P}) ()

where P, denotes the posterior distribution of the recon-
structive visible variables sampled by n steps of Gibbs
sampling. The surprising empirical result is that even n =
1 often gives a good result. KL(P’ | P ) exceeds KL(P;
| P;) unless P’ = P,. Since the contrastive divergence is
positive, P° is equivalent to P;. The contrastive diver-
gence is equal to zero only when the RBM model is at
equilibrium.

The parameters of the model, @ = {W, a, b}, can be
adjusted in proportion to the approximate derivative of the
contrastive divergence:

0 =0 + (W) - (v ) ©)

It works relatively well in practice that the original vec-
tor data is reconstructed only by one Gibbs step''’. The
updated parameters are given as

0'=0"+((V1") - (V') (10)

Using an alternative CD learning algorithm, the high-
dimensional data is always close to the low-dimensional
data. The procedure of the fast CD-k learning algorithm
is listed as follows.

Algorithm 1 TrainRBM (V, ¢, M, N, W, a, b)

Input. V is a sample from the training for the RBM, V
={v,,v,,,v,| ;& is the learning rate for the stochastic
gradient descent in CD ;M is the number of the RBM via-
ble units ;N is the number of the RBM hidden units; W is
the RBM weight matrix;a is the RBM offset vector for
viable units ;b is the RBM offset vector for hidden units.
Initialize parameter W, =a, =b, =0, i=1,2,--- ,M,j =
1,2,---,N; set the number of iterations 7 and the number
of steps of Gibbs sampling K.
for t=0to T do

for each training example v,, m =1 to M do

Vo=,
for k=0 to K-1 do
for each hidden variable /,, n=1 to N
sample h.;k) ~p(h;l v
end for
for each viable variable v,, m=1 to M
sample v**" ~ p(v, 1Y)
end for
fori=1,2,---,M;j=1,2,--- ,N do
W e (pChy [0 ) 59 =pChy [V )

ij

o) 2 g0 4 o (3 — )
b =0 e (p(hy [v") =p(h, [v)
end for

end for
end for
end for

5 Fine-Tuning All Layers of DBN by Back-
Propagation Algorithm

The weight matrices, which are pre-trained at each lay-
er by contrastive divergence learning, are efficient but not
optimal. Therefore, the unsupervised layer-by-layer train-
ing algorithm is performed for each RBM network, and
the final supervised fine-tuning learning is used to adjust
all the parameters simultaneously. The BP algorithm for
feed-forward multi-layered neural network plays a key
role in fine-tuning the weights of the connections in the
DBN""’. Fine-tuning a DBN based on the BP algorithm
consists of two phases. In the first phase, in order to ob-
tain better initialization parameters, the feed-forward
DBN is trained by the RBM learning algorithm based on
k-step contrastive divergence. In the second phase, a
measure of the difference between the actual output vector
of DBN and the desired output vector is minimized, and
the weight matrices are repeatedly adjusted during the
down-pass. The down-pass, which propagates derivatives
from the top layer back to the bottom layer, employs the
top-down generative connections to activate each lower
RBM layer in turn. Then the procedure of the fine-tuning
learning algorithm based on the BP algorithm is listed as
follows.

Algorithm 2
Efineune » W@, b)

Input; Example is a training set of (v,,r,) (i=1,2,
--+,m) ;1 is the number of RBM layers ; numhid is a set of
hidden units { numhid, , numhid, , ---, numhid, | at each
RBM layer; &, 15 @ learning rate for the DBN train-
ing; W*is the weight matrix for RBM at level k, for k
from 1 to /;a" is the offset vector for viable units for
RBM at level k, for k from 1 to /;b" is the offset vector
for hidden units for RBM at level k, for k from 1 to /.
% Forward propagation
V=v.M=m

FineTuneDBN ( example, /, numhid,
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for k=1 to [ do
initialize W* =a" =b" =0,6 = ¢, =0.5
TrainRBM(V, &, M ,numhid, , W* a" ,b")
M = numhid,
e=¢e/(1+¢)
end for
fori=1,2,---,m do
compute o,( x,)
end for
% Backward gradient propagation and parameter update
fork=1to 1
if k=1
S5,«o0,(1-0,)(t,-0,)
else

8,<0,(1-0,) z 0,5,
k e outputs
6,0, + A0,
end if

end for

0;‘:‘ =& 1‘ine—1une5,'x_/

6 Experimental Results

6.1 Benchmark dataset description

The KDD Cup 1999 dataset'*’, which is provided by
the Defense Advanced Research Projects Agency ( DAR-
PA) and contains the attack data of several weeks, is em-
ployed to assess the performance of various IDS.

The KDD Cup 1999 dataset contains 494 021 records in
the training data and 11 850 records in testing data. The
data distribution of the dataset is shown in Fig. 4.

4 391 458

HEl Training data
[ Testing data

229 853

197 278
60 593

Number of records/10°
)

—_

4166
112616189 53 228 4107

Normal DoS R2L U2R
Category

Fig.4 Attacks distribution in the KDD Cup 1999 dataset

Probing

6.2 Data preprocessing

Each record of the KDD Cup 1999 dataset, which is la-
beled as either normal or one specific kind of attack, is
described as a vector with 41 attribute values. Those at-
tributes consist of 38 continuous or discrete numerical at-
tributes and 3 categorical attributes. Deep belief networks
require floating point numbers for the input neurons, and
the values of floating point numbers range from 0 to 1.
Therefore, all features are preprocessed to fulfill this re-
quirement. Preprocessing data consists of two phases as

follows :

1) Numeralization of symbolic features. Three symbol-
ic features, including protocol type, service type and flag
type, are converted into binary numeric features. For ex-
ample, protocol type “tcp” is converted into binary nu-
meric features vector {1,0,0}, “udp” is converted into
vector {0,1,0}, and “icmp” is converted into vector
10,0,1}. Since the features “service type” can be ex-
panded into 70 binary features and the features “ flag
type” can be expanded into 11 binary features. Finally,
41 attributes are numeralized as 122 attributes.

2) Normalization of numeric features. Each numerical
value obtained in the first phase is normalized to the inter-
val [0,1], according to the following data smoothing
method.

y_Mmin (11)
y —Mmax _Mmin

where y is a numerical value; M_. is the minimum value

min

for the attribute that y belongs to; and M, is the maxi-
mum value for the attribute that y belongs to.

6.3 Evaluation measurement

An IDS requires high accuracy, high detection rate and
low false alarm rate. In general, the performance of IDS
is evaluated in terms of accuracy A., detection rate D,
and false alarm F,.

A Le+Tv (12)
ST, +Ty+F, +F
TP
ROT, +F, (13)
F, = i’ (14)
AT T+ F,

where true positive 7, is the number of attack records cor-
rectly classified; true negative T is the number of normal
records correctly classified; false positive F}, is the num-
ber of normal records incorrectly classified ; false negative
F is the number of attack records incorrectly classified.

The squared reconstruction error of the raw input is of-
ten used to monitor its performance. The squared recon-
struction error is defined as

n 122

> ( Y (v =)

k=1

(15)

e
n

where v, is the i-th component belonging to the k-th sam-
ple vector; v, is the i-th component belonging to the k-th
reconstructed sample vector; n is the total number of
samples, and the number of attributes after data prepro-
cessing is 122.

6.4 Experimental results and analysis

Experiments are designed and implemented, in which
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the KDD Cup 1999 dataset is used to evaluate the per-
formance of the proposed model. All programs are coded
in Matlab 7. 0 and run in a personal computer with an In-
tel CPU 1. 86 GHz and 2 GB memory.

It is important to determine a proper iteration number.
With the increase of iteration numbers, the detection rate
increases accordingly, as shown in Fig. 5. DBN can be
expressed as DBN,, where i denotes the number of RBM
layers. The deep DBN, is used to evaluate the detection
rates corresponding to iteration times from 10 to 500. The
curve of detection rate shown in Fig.5 appears to increa-
ses and then stabilizes. If the iteration number is greater
than 150, the curve will be smoother.

100 |
90}
80|

‘§m7o-

Q60|
50}
40}

30 . - . . . - - . - y
0 50 100 150 200 250 300 350 400 450 500
Iterative number

Fig.5 The iteration number of RBM training

Tab. 1 compares the performances of DBN, SOM and
NN on the KDD Cup 1999 dataset. Four different DBNs,
including a shallow 122-5 DBN,, a shallow 122-60-5
DBN,, a deep 122-80-40-5 DBN, and a deep 122-110-90-
50-5 DBN,, are selected. According to the results in
Tab. 1, the detection rates of the shallow DBN, and
DBN, are not better than that of SOM, but the detection
rate of the deep DBN, added one layer RBM is higher
than those of SOM and NN. Therefore, the A, of the
deep 122-110-90-50-5 DBN, is improved by 2. 67% and
6.19% , respectively, compared with SOM and NN. The
D, of the deep DBN, is improved by 2.76% and 5.7% ,
respectively. The F, of the deep DBN4 is improved by
0.4% and 0.55% , respectively. Therefore, DBN using
the RBM network with three or more layers outperforms
SOM and NN in A., D; and F,.

Tab.1 Performance comparison of the six network structures

%
Model Ac Dy Fy
DBN, 74.22 75. 60 3.15
DBN, 82. 65 81. 30 2.72
DBN; 90. 97 89. 69 1.12
DBN, 93.49 92.33 0.76
SOM 90. 82 89.57 1. 16
NN 87.30 86. 63 1.31
Larochelle et al. "'’ argued that the number of nodes in

the first hidden layer has a significant influence on classi-
fication performance. Fig. 6 compares the performances
of DBN with different number of nodes in the first hidden

layer when a deep 122-110-90-50-5 DBN, is set. Accord-
ing to the results in Fig. 6, the classified accuracy is the
best when the number of nodes in the first hidden layer is
set to be 110.

100 92,34

1 1

4O 1 1 1 1 1
90 100 110 200 400 600 800 1 000
Number of nodes in the first hidden layer

Fig.6 Performance comparison of DBN with different num-
bers of nodes in the first hidden layer

Another important exploration is to choose an optimal
number of nodes in the output layer to improve the per-
formance of intrusion detection. In Fig. 7, a deep 122-
110-90-50-5 DBN, is selected, with the different numbers
of nodes in the output layer set from 1 to 10. According
to the results in Fig. 7, the classification accuracy and de-
tection rate are the optimal when the number of nodes in
the output layer is set to be 5.

100 —
0r— Dy
80+
70
60r
50F
40
301
20
10+

0

Ac,Dyp/%

1 2 3 4 5 6 7 8 9 10
Number of nodes in output layer
Fig.7 Performance comparison of DBN with different num-
bers of nodes in the output layer

The intrusion classification experiment is performed
with different types of attacks in the KDD CUP 1999
dataset. Tab. 2 compares the performances of DBN,,
SOM and NN. In Tab.2, the accuracy rate of the DBN,
is improved by 2.54% and 5.525% on average, respec-
tively, compared with SOM and NN, and the false alarm
rate of the DBN, is improved by 0.56% and 0.72% , re-
spectively. The experimental results show that deep
DBN, can effectively enhance the IDS detection rate and
reduce their error rate.

Fig. 8 compares the squared reconstruction errors of
pre-trained DBN, and randomly initialized DBN, , both of
which have the same parameters. As shown in Fig. 8, the
DBN, with pre-training can make the fine-tuning faster
than that without pre-training. After 100 iterations in the
fine-tuning, the average squared reconstruction error per
input vector of pre-trained DBN, is smaller than that of
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Tab.2 Performance comparison of three classifiers on differ-

ent types of attacks %
Attack type NN SOM DBN,
Ac F, Ac F, Ac F,
DoS 89.76 1.19 93.34 1.12 95.60  0.96
R2L 85.63 3.62 89.57 3.22 93. 30 1.24
U2L 86.91 0.92 88. 11 0.83 89. 69 0.78
Prob 87.52  0.76  90.75 0.69  93.33 0.62

randomly initialized DBN, , as shown in Fig. 8. If the it-
eration number is greater than 450, the curve basically
maintains stable. The difference of the average squared
reconstruction error between the pre-trained and randomly
initialized is about 4.36. The experimental results show
that using pre-training and fine-tuning can improve the
performance in IDS classification.

L4rn —<— Randomly initialized DBN,
—+— Pre-trained DBN,

—
%)
T

—_
(=]
T

oo
T

=)
T

+

Squared reconstruction error

[3%]

0 L 1 L 1 L I 1 L 1 |
0 50 100 150 200 250 300 350 400 450 500
Number of epoches

Fig.8 Comparison of the squared reconstruction error

Another challenge in the classification of huge amounts
of data using the proposed model is the real-time analysis
and processing of data in a short period of time. There-
fore, the assessment of the proposed model is crucial. In
order to increase the number of experimental data, dupli-
cate records are randomly added to the KDD CUP 1999
dataset, and the running time of our computer using the
DBN, model is recorded, as shown in Fig.9. The experi-
mental results show that the running time approximately
increases linearly as the number of records increases.

251
20
15

10

Running time/s

0 1 1 1 1 1
0 2 4 6 8 10 12 14

Number of records/10°
Fig.9 The scalability of DBN,

7 Conclusion

This paper aims at demonstrating that DBN can be

successfully applied in the field of intrusion detection.
DBN can not only extract features from high-dimensional
representations but also efficiently perform classification
tasks. This paper explores the idea of applying DBN to
classify attacks accurately. The performance of DBN is
evaluated by experiments, and DBN is compared with
other machine learning models, such as SOM and NN.
Finally, the experimental results on the KDD CUP 1999
dataset show that a good generative model can be ac-
quired by DBN, which performs well on the intrusion
recognition task. To some extent, the DBN, which can
replace the traditional shallow machine learning, pro-
vides a new design idea and method for future IDS re-
search.
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