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Abstract: The complexity and applicability of three relative
car-following models are investigated and they are the optimal
velocity model (OVM), the generalized force model ( GFM)
and the full velocity difference model (FVDM). The vehicle
trajectory data used is collected from the digital pictures
obtained at a 30-storey building near [-80 freeway. Three
different calibrating methods are used to estimate the model
parameters and to study the relationships between model
complexity and applicability from overall, inter-driver and
intra-driver analysis. Results of the three methods of the
OVM, GFM and FVDM show that the complexity and
applicability are not consistent and the complicated models are
not always superior to the simple ones in modeling car-
following. The findings of this study can provide useful
information for car-following behavior modeling.
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The car-following model, one of the most important
types of microscopic models in traffic flow field, has

[1-2]

been developed for more than five decades” ~. In recent

years, some researchers draw a common conclusion that
the complicated models with less fitting errors are better
than the simple ones due to more parameters, which can
be misleading in reality'”™'.

The prime objective of this study is to analyze the com-
plexity and applicability of different car-following mod-
els. The optimal velocity model (OVM), the generalized
force model (GFM) and the full velocity difference mod-
el (FVDM) are investigated in this paper. Large amounts
of measured data are also used to calibrate and cross-com-
pare the three car-following models with different com-
plexities. The applicability takes the overall perform-
ances, inter-driver differences and intra-driver differences
into account.
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1 Car-Following Models

The OVM introduced by Bando'® is used in this paper.
Aslo, the GFM'”' and FVDM'"' | which are derived from
the OVM, are used. In these models, the acceleration of
the n-th velocity is determined by the difference between
the actual velocity v, and the optimal velocity
V(Ax,_,,), and the speed difference Av, ,,. Tab. 1
summarizes different models with various driving factors,
and FVDM has the highest complexity and most compre-

hensive considerations of diversified conditions.

Tab.1 Complexity analysis of three different models

Model V(Ax, 1 ) v, Av, _; ,(<0) Av,_ ,(>0)
OVM v v

GFM v v v
FVDM v v v v

2 Data Source

The trajectory data used for calibrating the three car-
following models is collected on a section on [ -80 free-
way, USA, which is approximately 500 m in length,
with an on-ramp at Powell Street. The data is collected
from a 15-min video between 16: 00 and 16: 15 on April
13, 2005. To obtain the suitable leader-follower combi-
nations among all the trajectories, all the vehicles are fil-
tered according to two criteria: 1) The trajectories of the
leader-follower combinations should cover a period at
least 15 s; 2) The following car has a unique leader,
which ensures that the follower is concerned with cars in
the same lane. Following the data selecting procedures,
all the vehicles are filtered and 100 valid sets of leader-
follower combinations are available for analysis.

3 Calibration Methods

3.1 Calibration for overall analysis

For overall analysis, the models are calibrated for all
drivers with the following approach: The measured data
of the leader is served as input for three different car-fol-
lowing models. The models calculate the acceleration of
the follower and obtain the velocity and position. In this
case, the models can simulate the movements of each fol-
lowing car. Comparing the measured data and simulated
date of the follower (the driver n), we can obtain the er-
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ror term ¢ for each driver and calculate the overall error
term E for all the drivers. The error term g is defined as

/X -rap))
) ARG
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where v "(1) is the observed speed of the following car at

[VI"(B), AX" (B)]

(1)

sim

time #; v," (¢, B) is the simulated speed of the following
car at time ¢ with parameter vector 3; Axibflyn(t) is the
observed spacing between the leader and the follower at
and Ax",  (t, B) is the simulated spacing be-
tween the leader and the follower at time ¢ with parameter
vector 3.

The overall error term E used as the combination objec-

tive function is calculated as

time t;

1 i sim sim
E =3 elv,"(B), A L(B)] (2)
1
where N is the number of vehicles.

3.2 Calibration for inter-driver analysis

For inter-driver analysis, the real data of the leader is
also served as input for the models to calculate the simu-
lation data of the follower, acceleration, velocity and po-
sition. Using the measured data and the simulated data,
the error term of each vehicle for inter-driver difference a-
nalysis is calculated from Eq. (1). For each driver, the
parameter vector is calibrated separately. Therefore, the
objective function is applied for all the vehicles independ-

ently and is defined in a similar way:

E, =&, [v\"(B), AX" (B)] 3)

3.3 Calibration for intra-driver analysis

For intra-driver analysis, the data of all the leader-fol-
lower combinations are split into two parts equally first.
Each part has at least 75 observations. Then, part | and
part [ are calibrated with the method mentioned in the
calibration for inter-driver analysis, respectively. For
each vehicle in the two parts, the error term ai is defined
as

e [v,"(B), Ax% ' (B)]
VI v )’
> vl
A () - AT (4 8)1
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where J e {Part [, Part II }.
In the two parts, the parameter vector of each vehicle

(4)

is calibrated in the same way, with the independent ob-
jective function as follows:

E =&[v™(B), Ax™ (B)] (5)

4 Results

4.1 Results of overall analysis

The calibration process of overall analysis is conducted
three times, and the results are shown in Tab. 2 and Tab.
3. The results show that the OVM has the highest average
error of 0. 13, which means that the OVM does not per-
form as well as the other two models at a relative macro-
scopic level for all the vehicles. The GFM and FVDM
perform well, with average errors of 0.09 and 0. 08, re-
spectively. These results are in accordance with the exist-
ing research results; i.e., FVDM has the highest com-
plexity among the three models and can simulate the car-
following behavior more sophisticatedly. The time-consu-
ming T of each calibration is also recorded, which indi-
cates that the models’ precision and efficiency are contra-
dictory.

Tab.2 Results of E of calibration for overall analysis

Relative to

E E E E. ..
Model 1 2 3 mean OVM/ %
OVM 0.128 3 0.128 1 0.128 5 0.13 0.00
GFM 0.0890 0.0890 0.089 8 0.09 -30.41
FVDM 0.077 4 0.0794 0.077 4 0.08 -39.19
Tab.3 Time-consuming of calibration for overall analysis
Relative to
T,/s T,/s T5/s /s
Model 1 2 3 mean OVM/%
OVM 1 033 1 033 1125 1 064 0
GFM 1164 1160 1 164 1162 9.28
FVDM 1267 1268 1273 1269 19.32

4.2 Results of inter-driver analysis

The descriptive statistics for inter-driver analysis shown
in Tab. 4 indicate that the complex model is inferior in
certain aspects,
The coefficient of variation (CV), defined as the ratio of
the standard deviation divided by the mean,
evaluate the degree of dispersion of different model pa-
rameters. The mean CV values of all the parameters illus-
trate that the simplest model OVM has the smallest CV,
which implies the minimum degree of dispersion of model
The large CV value of the FVDM means that
the model cannot be used to model all the vehicles with

especially in inter-driver heterogeneity.

is used to

parameters.

the unique parameters due to inter-driver heterogeneity.
From this perspective, the complex models are not always
applicable for modelling car-following.
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Tab.4 Descriptive statistics for inter-driver analysis

Model Statistics a A Vmax h, Mean

Mean 0.35 38.91 53.87

OVM SD 0.37 16.38 17.00
(6\% 1.06 0.42 0.32 0.60

Mean 0.11 0.80 64.82 45.51

GFM SD 0.12 0.52 32.43 19.82
(6\% 1. 11 0.65 0.50 0.44 0.67

Mean 0.10 0.43 53.67 53.53

FVDM SD 0.25 0.27 33.82 22.44
Ccv 2.58 0.62 0.63 0.42 1.06

4.3 Results of intra-driver analysis

The Theil’s U™ is applied to compare the intra-driver
differences of the two parts. As shown in Tab. 5,
clear that the simplest model OVM has the smallest mean
U value of 0.361 8, which means that the OVM has the
minimum degree of dispersion of parameters for the dif-

it is

ferent driving periods of the same driver. In contrast, the
complicated FVDM has the largest average U value of
0.416 9, which means that the model cannot model dif-
ferent periods of the same vehicle with the uniform pa-
rameters. The results show that complicated models ( such
as the FVDM) do not have better performances consider-
ing intra-driver heterogeneity.

Tab.5 Results of calibration for intra-driver analysis

Model U(a) U(r) U(Vnax) UCh,) U ean

OVM  0.5241 0.312 1 0.2491 0.3618
GFM 0.649 3 0.406 0 0.313 1 0.270 6 0.409 8
FVDM  0.636 3 0.360 5 0.350 8 0.3202 0.4169

5 Conclusion

An approach is proposed to investigate the relationship
between complexity and applicability of car-following
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models by using trajectory data. The most important re-
sult from the inter-driver and intra-driver analysis is that
the complexity and applicability are not consistent.
Therefore, in future research, the standard determining
the appropriate car-following models of different research

goals is urgently needed.
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