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Abstract: To study the throughput scheduling problem under
interference temperature in cognitive radio networks, an
immune algorithm-based suboptimal method was proposed
based on its NP-hard feature. The problem is modeled as a
constrained optimization problem to maximize the total
throughput of the secondary users ( SUs). The mapping
between the throughput scheduling problems and the immune
algorithm is given. Suitable immune operators are designed
such as binary antibody encoding, antibody initialization based
on pre-knowledge, a proportional clone to its affinity and an
adaptive mutation operator associated with the evolutionary
generation. The simulation results show that the proposed
algorithm can obtain about 95% of the optimal throughput and
operate with much lower liner computational complexity.
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he increasing growth in wireless communication de-
T mands has intensified the shortage crisis for the radio
spectrum, while a significant amount of the licensed spec-
trum is not currently being utilized""". The spectrum is far
more underutilized rather than naturally scarce. A cogni-
tive radio network (CRN) is a kind of intelligent commu-
nication system, which enables the devices to opportunis-
tically access the licensed spectrum, and thereby enhance
the utilization of the existing spectrum resources'” . The
nodes in a cognitive radio network can be classified into
primary users ( PUs) and secondary users (SUs). A PU is
a licensed user that has exclusive rights to the access spec-
trum. A SU is an unlicensed user that can utilize the
spectrum opportunistically with primary users under inter-
ference restriction.
Throughput optimal scheduling for cognitive radio net-
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works under interference temperature constraints is an
open research issue'*’. The throughput scheduling deter-
mines how many packets and with which frequency each
SU will transmit in each time slot™. The aim of it is to
maximize the total throughput of the SUs in the cell. The
throughput scheduler issue in conventional networks has
been widely studied'”. Nonetheless, the cognitive radio
paradigm brings new challenges into the issue because of
the coexistence of the PUs and the SUs. The throughput
scheduling problem considered in this paper can be distin-
guished from these works by its cognitive radio specific
nature. That is, not only the availability of different fre-
quencies but also the maximum allowable transmission
rate of the frequency bands are time-varying''.

Researchers have done some work with different sce-
narios. In Ref. [6], a throughput scheduling algorithm
was proposed which does not enable the true coexistence
of the PUs and the SUs. The authors in Ref. [ 7] formula-
ted a distributed heuristic to determine the channels and
time slots for the cognitive nodes. However, they do not
consider the interference for the PUs either in their opti-
mization formulation or in their suboptimal heuristic. The
interference temperature model provides the true coexis-
The
throughput optimization is a binary integer programming
problem, so the formulated scheduling algorithms have a
high computational complexity”” . In Ref.[3], its opti-
mal solution was obtained by the branch-and-bound algo-
rithm with very high computational complexity. In Ref.
[4], the authors focused on throughput scheduling under
interference temperature constraints and formulated the
throughput maximization problems. Then,
proposed suboptimal schedulers, referred to as maximum
frequency selection ( MFS) and probabilistic frequency
selection (PFS), with low complexity at the expense of
poor throughput performance. Hence, the design of better
performing suboptimal scheduling with reasonable com-
plexity is very meaningful.

It is known that bio-inspired methods are ideal for such
nonlinear optimization problems™. Some bio-inspired
methods have been employed in conventional ( non-cogni-
tive) schedulers, such as the genetic algorithm'” and par-
ticle swarm optimization'"”. In this paper, an improved
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immune algorithm is introduced to solve the throughput
scheduling problem. The inspiration comes from the fact
that the immune algorithm is ideal for nonlinear optimiza-
tion problems with a large feasible solution space where a
quick sub-optimal solution will suffice. Also, to the best
of our knowledge, the use of the immune algorithm for
scheduling in cognitive radio networks has not previously
been explored.

1 System Model

Consider a time-slotted IEEE 802. 22 system in which
the SUs are controlled and guided by the cognitive base
station (CBS) ™. The scheduler is at the CBS. Assume
that the interference temperature perceived by the PUs is
within the interference temperature limits; reliable com-
munication between the CBS and the SUs is achieved;
and collisions among the SUs are avoided'”'. Each SU n
calculates every frequency f, and the value is denoted as
U, which is the maximum number of packets that it can
transmit for frequency f in a time slot. The calculation
procedure for U, values guarantees that the interference
temperature perceived by the PUs is within the predeter-
mined limits. The CBS then constitutes a matrix called U
=[U,].

The throughput optimal schedule can be formatted as

Q:maxzzz "fT"ﬂ (1)

Vnel?2 ...N (la)

Xy + X, <1 VYnnel,2,...N;, n#n'; Vf, Vt
(1b)

where N, F, T are the total number of SUs, frequencies,
time slots, respectively; X,, is a binary variable such that
X, =1 if user n transmits with frequency f in time slot ¢
and 0 otherwise. Constraint (1a) guarantees that at least
one time slot is assigned to each SU, whereas constraint
(1b) makes certain that at most one user can transmit at a
particular time slot and frequency combination, and con-
sequently preventing collisions among the cognitive
nodes. Moreover, the schedule length T is the time peri-
od in which the spectral and networking environment
changes slowly enough so that the X,, values are not af-
fected. For example, the TV bands used by an IEEE
802.22 network constitute a slowly altering spectral envi-
ronment, and hence enable T to be large enough'*.

2 Proposed Algorithm
2.1 Overview of immune optimization algorithm

The artificial immune system ( AIS) is inspired by the
human immune system. The AIS-based algorithms typi-
cally extract ideas from the human immune system’s char-

acteristics of learning and adaptability to solve some com-
plicated problems''”. Most immune system inspired opti-
mization algorithms are based on the clone selection prin-
ciple. Clone selection is a dynamic simulation process of
the immune system that is self-adaptive against antigens.
The clone selection algorithm for optimization has been
widely used in engineering-oriented fields, such as spec-
trum allocation'""", job scheduling'”, and image seg-
mentation'”’ and so on. These algorithms essentially
evolve solutions to problems via the repetition of a clone,
affinity maturation ( via mutation) and a selection cycle
for a candidate solutions population, and remaining good
solutions in the population''"*' .

Some related terms are described briefly as follows:

1) Antigen. An antigen represents one sample in the
solution space of the problem. In this paper, antigen re-
fers to the throughput schedule problem to be solved and
the total constraints.

2) Antibody. An antibody represents a candidate solu-
tion to the problem in this paper.

3) Antibody population. The complete antibodies con-
sist of antibody population.

4) Affinity. Affinity is the fitness measurement for an
antibody, which indicates the extent that the antigen satis-
fies the problem requirements.

5) Clone.
propagation so that a group of identical cells can be de-
scended from a single common ancestor. It is used to en-
large the search region.

6) Mutation. In immunology, mutation means the im-
mune system recognizes external patterns from antibody

In immunology, cloning means asexual

gene mutation in order to obtain a higher affinity. Muta-
tions take the search procedure out of a locally optimal re-
gion, and enable it to possibly enter a better region of the
search space.

7) Selection. An immune algorithm takes a group of
antigens from a population using an operation called se-
lection.
eliminating the relatively bad solution candidates and fo-
cusing the search operation on a relatively good portion of
the solution space.

The selection operation serves the purpose of

2.2 Realization of throughput scheduling based on
the immune algorithm

Our motivations for utilizing the immune algorithm for
the throughput optimal scheduling problems are manifold.
First, the immune algorithm is suitable for problems with
large search spaces. It is equipped with many tools to re-
duce the computational complexity and produce a diverse
set of solutions. The fact that the immune algorithm oper-
ates on a population of solutions rather than a single solu-
tion implies that the algorithm makes parallel searches in
the search space. Considering that the solution space in
the throughput scheduling problems is enormous (even for
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5 nodes, 3 frequencies, and 3 time slots, the size of the
solution space is 2*), the immune algorithm appears to
be a suitable tool. Secondly, the immune algorithm can
be conveniently implemented. The binary decision varia-
bles X,, can be easily encoded to a binary string.

Some key techniques are as follows:

1) Antigen representation (encoding). We use the bi-
nary encoded antigen which contains X,, values. Thus,
the antigen [ X\, Xy, X515 X105 Xopps oo Xy Xogss X1,
whereas the other antigen structure is [ X,,,, X, X,535»
Xigis Xiggs -oes Xagps Xaps] - X, 18 @ gene bit of antibody.

2) Affinity evaluation. In this paper, the optimization
model is described in Eq. (1). The affinity is a mapping
of the value of Eq. (1) for a given antibody. Since Q is
to be maximized, it can be stated that if an antibody has
higher affinity, it is the better one.

The proposed algorithm for throughput optimal schedu-
ling schemes is implemented as follows:

Step 1 Initialization. Set the maximum iterative gen-
eration ¢, .
erative generation. Create an initial antibody population
A(t) with size k in accordance with antibody encoding in
section 3.2. That is

Set t+ =0, where ¢ is termed as the current it-

A1) ={p,(0),p,(0),....p(D) } (2)

where p,(1 <i<k) is a candidate throughput scheduling
scheme; A(7) is a set of candidate throughput scheduling
schemes.

Here, some pre-knowledge is used to initialize the anti-
body p, in order to accelerate algorithm convergence,
which is proved by the latter simulation experiments.
From constraint (1a), it is known that at least one time
slot is assigned to each SU. Constraint (1b) makes cer-
tain that at most, one user can transmit at a particular
time slot and frequency combination. Each antibody p,(1
<i<k) that satisfies the constraints (1a) and (1b) will
be a candidate.

Step 2 Affinity evaluation. The affinities of all anti-
bodies in A(f) are calculated according to Eq. (1) and it
is denoted as

JLACD)) = {fp, (D), f(p, (1)), ... lp (D)} (3)

If an antibody p,(#) (1 <i < k) has a higher affinity,
the throughput scheduling scheme is the better one.

Step 3 Proportional clone 7,. In this paper, B(?) is
obtained by applying clone proliferation 7, to A(¢), and
it is defined as

B(1) =T.(A(1)) ={T(p,(D),T.(p,(),....T(p,(1) }
(4)

Here, the clone scale g, for each antibody p,(1 <i<k) is
proportional to its affinity f(p,(¢)). That is

(1
fp(D) ) (5)

q.(1) = Int(nc k
2 fp(D)

where Int() denotes the integer function, and n_ is a giv-
en value (n, > k). The antibody with a large affinity val-
ue (objective function value of Eq. (1)) has a large g,.

k
Letz = z q;, then B(t) can be expressed as
i=1

B(») ={pi(t),pi(1),....,p.(1)} (6)

Actually, clone proliferation on antibody p,(t) is to
make multiple identical copies of it.

Step 4 Mutation 7,. In this paper, it is defined as
C(t) =T, (B(t)). An adaptive mutation which associates
the mutation probability m, with the evolutionary genera-
tion is designed. That is

t
mpzmpx(l—t—) (7

max

where ¢ is the current evolutionary generation; ¢, is the
maximum evolutionary generation.

The advantages of the mutation lie in its searching abil-
ity within a large scope in the early evolution process
while it searches in a local scope in the latter evolution
process, which can accelerate the convergence. After mu-
tation, the population becomes

C() ={p(D),p5(0),....p°(D) } (8)

In this paper, the mutation is done by exchanging the
element one and element zero with each other with proba-
bility m,. The proposed mutation is easily realized and it
does not violate the constraints.

Step 5 Affinity evaluation. The affinities of all anti-
bodies in C(¢) are calculated according to Eq. (1) and it
is defined as

JCC(D) = {fpi (D), fip5(), ... flp(D)}  (9)
Step 6 Clone selection T, is defined as

A(t+1) =T.(C(1) UA(1) =

(p(t+1),p,(t+1),....p(t+1)) (10)

That is, k antibodies with a high affinity are selected from
C(1?) and A(?) to form the next population A(z+1).

Step 7 Termination test. If 7, is reached, stop the
algorithm. Output the antibody with the maximum affini-
tyin A(t + 1) as the result of the throughout scheme.
Otherwise, t=1+1, and go to Step 3.

max

2.3 Computational complexity

Recall that N denotes the number of SU, and F denotes
the number of available frequencies. For the immune-
based scheme, the total computational complexity is
mainly composed of that for initialization, affinity evalua-
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tion, cloning, mutation, and selection. Given the popu-
lation size k, the clone scale n (n, >k) and the maximum

generation ¢ the procedure of population initialization,

the affinity evaluation and proportional clone ( Step 1 to
Step 3) has the same computational complexity of
O(kFN) in each generation, while the procedure of muta-
tion, affinity evaluation, selection ( Step 4 to Step 6) has
the computational complexity of O(kn_FN) in each gen-
eration. Hence, for each generation, the total computa-
tional complexity is O(3kFN + 3kn FN). Since n, > k,
according to the properties of symbolic 0", it can
be denoted as O(n FN). When the throughout scheduling
is finished, it has the total computational complexity of
o(t,.n.FN).

The computer simulations show that 7 implicitly de-
pends on F and N. The more complex the search space
is, the larger the number of generations should be. Thus,
for given n, and ¢, the gradual computational complexi-
ty of the proposed algorithm is O( NF) in accordance with
the properties of symbolic O.

A brief summary of the complexities of previous typical
algorithms and our proposed algorithm is as follows. The
complexity of algorithm in Ref. [3] is O( FN*), while the
complexity of our proposed algorithm is the same as the

algorithm in Ref. [4], which is O(FN).
3 Simulation Results and Discussion

3.1 Experimental environments and parameter set-
tings

We simulated the suboptimal schedulers and acquired
the U, values in OPNET Modeler, and we solved the op-
51 Additive white
Gaussian noise (AWGN) channels are considered. In all

timization problems in CPLEX

the simulations, each SU has three primary neighbors in
its interference range. The simulation results are the aver-
age of 100 independent tests. The parameter settings are
as the same as that in Refs. [4 —5]. There are three fre-
quencies with interference temperature thresholds of
1 000, 2 000, and 3 000 K.

3.2 Sensitivity in relation to the immune algorithm
parameters

Four parameters are to be set at the initialization phase:
the antibody population size k, the clone population size
n,, the mutation probability m,, and the maximum num-
ber of generations ¢, . The sequential experimental de-
sign method of employing a series of small experiments
each with a specific objective is a common method in ex-
perimental design''”, because the experimenter can
quickly learn crucial information from a small group of
runs that can be used to plan the next experiment. k and

n, directly affect the computational complexity of the al-

gorithm!"*™!

. If the given k and n_ are large enough, the
diversity of the population can be enhanced and the pre-
maturity can be avoided in some extent, but the computa-
tional complexity will also be very large. ¢, clearly de-
pends on F and N. The more complex the search space
is, the larger the number of generations should be. m, is
very important for local search in the algorithm. A large
m, has the ability to produce more new antibodies, but it
also has the probability to destroy some good antibodies.
When m, is too small, the convergence speed is not quick
enough to find the best solution in appointed generations.

Since the optimal choice is difficult to determine by
theoretical analysis, it is important to analyze the per-
formance affected by experiments in different cases. After
trial and error, the parameters employed in the proposed
immune algorithm are as follows: the number of genera-

tions ¢, is 100; the population size k is 50; the clone

X

scale n, is 10; and the mutation probability m, is 0. 3.
3.3 The performances of the proposed algorithm

In order to evaluate the performances of the proposed
algorithm, the effect of number of iterations (evolution-
ary generation) on throughout scheduling is studied, and
the number of SUs is set to be 5. As it is evident from
Fig. 1, the throughout initially increases with the number
of evolutionary generations and then gradually converges
to the high value, close to an optimal point. It is also can
be seen that the proposed method provides significant gain
in throughout and fast convergence rate. The simulation
results prove the effectiveness of the proposed immune
operators. It also can be seen from Fig. 2 that the evolu-
tionary generation increases with the numbers of SUs. It
is effective.

The results of different numbers of SUs are shown in
Tab. 1. It can be seen that the proposed algorithm gives
consistent good results. First of all, the proposed solution
yields better results than the MFS and PFS schedulers pro-
posed in Ref. [4], at the same time being very close to the
throughput optimal scheduler performance in Ref. [3].
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Tab.1 The results of relative algorithms for different numbers
of SUs

Number of SUs

Algorithm
5 10 15 20
Proposed throughout 27.85 27.97 2 841 2 872
Optimal throughout'®  27.91 28.79 29.46 29.89
MES!# 14.33 15.16 16.06 16.81
PFS!# 13.74 14.50 15.97 16.01

Fig. 3 presents the optimal throughput™, MFS, and
PFS' scheduling schemes compared with the proposed
scheduling scheme. The algorithm in Ref. [3] can be re-
garded as the upper-bound of the proposed heuristic algo-
rithm.

30
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Fig.3 Comparison of different algorithms

Fig. 4 shows the performances comparisons of relative
algorithms with the increase in the numbers of SUs. It
can be seen that the proposed algorithm performs excel-
lently. It is very close to the optimal performances in
Ref. [3] and is better than the algorithm in Ref. [4].

All in all, the proposed scheduling scheme achieves
performances close to the optimal scheduling operating
with much lower complexity. However, the iterations in
the simulation results reveal that the proposed algorithm is
computationally more costly than the MFS and the PFS
schedulers in Ref. [4]. Nevertheless, when they are com-
pared with the throughput performance, we can see that
the proposed algorithm is approximately twice as good as

35
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‘ —e— PFS!4)
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Fig.4 Throughout vs. numbers of SUs

the MFS and the PFS schedulers. Moreover, the pro-
posed algorithm is computationally more efficient than the
classical branch and bound algorithms that are used to
solve binary integer programming problems. Therefore,
ther proposed algorithm presents a very reasonable
tradeoff between computational complexity and perform-
ance.

4 Conclusion

The immune algorithm-based suboptimal scheduling for
the throughput problem in cognitive radio networks is pro-
posed. The simulation results show that the proposed al-
gorithm is very close to optimal performance with a rela-
tively lower complexity. Hence, it can be concluded that
the proposed scheduling is more suitable for slowly var-
ying spectral environments. Considering that IEEE
802. 22 networks that operate on the TV broadcast bands
that are slowly changing, it can be confidently concluded
that the proposed algorithm can operate in realistic net-
work settings, and provide useful solutions for the open
research problem.
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