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Abstract: A new algorithm, called MagnitudeCut, to recover
a signal from its phase in the transform domain, is proposed.
First, the recovery problem is converted to an equivalent
convex optimization problem, and then it is solved by the
block coordinate descent ( BCD) algorithm and the interior
point algorithm. Finally,
dimensional signal reconstructions are implemented and the
reconstruction results under the Fourier transform with a
Gaussian random mask ( FTGM), the Cauchy wavelets
transform (CWT), the Fourier transform with a binary random
mask (FTBM) and the Gaussian random transform ( GRT) are
also comparatively analyzed. The analysis results reveal that
the MagnitudeCut method can reconstruct the original signal
with the phase information of different transforms;
needs less phase information to recover the signal from the
phase of the FTGM or GRT than that of FTBM or CWT under
the same reconstruction error.
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he problem of restoring a signal from its phase in
T complex transform has gained more and more atten-
tion. Generally, the phase and the magnitude of the sig-
nal in the transform domain are mutually independent, so
the signal cannot be recovered only from the partial
knowledge of either one. However, Hayes et al. """ point-
ed out that it is possible to recover a signal from the
phase-only information under certain concrete conditions.
For example, exact or approximate prior information
(positivity, asymmetry, sparsity, etc.) on the original
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signal. Many methods have been proposed to solve the
above problem, including the iterative method, the statis-
tical method, the alternating projections method™, and
the partial phase information approach'”. Hua and Or-
chard™ proposed a new image reconstruction algorithm
with the simple geometrical model. Loveimi and Ahadi"’
reconstructed the speech signal via the least square error
estimation and the overlap add methods. Recently, Bou-
founos' explored compressive sensing to recover sparse
signals from phase information, where both the theoreti-
cal and experimental results suggest that the exact recon-
struction is possible. These methods have been used in a-
coustical and optical hologram, electron microscopy, and
X-ray crystallography. In this paper, we propose a novel
approach to reconstruct signals with no assumption on the
signals. Moreover, many experiments have been simula-
ted with the phase of different matrix transforms, which
are the Fourier transform with a Gaussian random mask
(FTGM), the Cauchy wavelets transform (CWT), the
Fourier transform with a binary random mask (FTBM),
and the Gaussian random transform (GRT).

We consider the signal reconstruction problem using
only the phase information because most of the signal in-
formation contained in the phase is more important than
that incorporated in the magnitude with the same number
of signals'". Inspired by the two methods reported in
Refs. [7 —8], the authors propose a novel magnitude re-
covery method called MagnitudeCut. The authors cast the
original problem as a new convex optimization” prob-
lem, and solve it by the block coordinate descent (BCD)
algorithm and the interior point algorithm. It is well
known that the phase information has been utilized in
many applications such as image retrieval'” and object
recognition''"". Hence, the authors expect to recover the
signal by using a small amount of phase information rath-
er than the magnitude information.

1 Phase-Only Signal Reconstruction

The original problem is formulated as

find x

) 1
such that ¢“* =u (D

where x e C” is the original signal and C” is a p-dimen-
sional complex vector space; u e C" is the Fourier phase
information; \ u,

=1fori=1,2,...,n and n is the size
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of u;A e C"” is the Fourier matrix and n x p is the size
of A; £ Ax denotes the phase angle of Ax. Our objective
is to recover the original signal with an appropriate num-
ber of samplings n.

We solve (1) by separating the magnitude and phase
Letting Ax = diag(u) b, where b € R" denotes
the magnitude vector, and R”
vector space. The original problem (1) can thus be writ-

variables.
is an n-dimensional real

ten as

min | Ax - diag(u)b ||§

xeC' beR

(2)

The minimization problem of formula (2) with respect
to x is a standard least square problem and can be solved
by setting x = A" diag(u)b, where ( - ) is the pseudo-in-
verse operator. Therefore, formula (2) can be trans-

formed equivalently to

gnin |AA diag(u)b - diag(u)b ||} (3)
eR"

The above formula can be rewritten as

HAA%diag(

2
=b"diag(u" ) Mdiag(u)b
2

where M = (AA" - 1)"(AA" -T1) =TI - AA". Let M be
the positive semi-definite matrix given by M = diag(u") -
(I-AA")diag(u). Finally, formula (3) becomes

min 'Mb s.t. beR’

(4)
Next, we denote B =bb" €S, , where S, denotes the

set of positive symmetric matrices, and then problem (4)

min Tr( BM)

t. B=0,BeS, ,rank(B) =1

(5)

After dropping the non-convex rank constraint, we ob-

S.

tain the following convex relaxation ;

min Tr(BM) s.t. B=0

(6)

In order to solve the convex optimization problem

(6), we use the BCD '™ to make formula (6) more
conveniently solved. The proposed MagnitudeCut method
is applied as the barrier version of MaxCut "’to relax
matrix B, so formula (6) becomes
min Tr(BM) -ulogdet(B) u>0 (7)
blbn
P y .
SetB:[T bz]’ Wherey:{ : :l;P:
y bnflbn
by b.b,
: : ]; b* = b’. According to Ref.
bn ]b bifl
[14], we know that
[0 | FA A K I S
yT bZ 0 I yT bZ _yTP—]y

So, we obtain det(B) =det(P)det(b> —y'P'y).

Since both M and B belong to H,, where H, is the Her-
mitian matrices of dimension n, we can formulate the

complex program in H, as the real programs'”’ | and ob-
tain the following equation
Tr(F(B)F(M)):ZTr(BM) (8)

)= Re(
~ [ Im(
to Eq. (8), we have

Tr(T(B)I'(M)) =Tr(2(BRe(M) ) )

)

where T'( ) )] Applying T'( +)

Re(

(9)
Hence, Eq. (7) becomes

min Tr(BRe(M) ) —ulog{det(P)det(b’ -y'P'y)}
(10)

By using the BCD and setting Re (M) = R, formula
(10) can be rewritten as

(11)

where je {1,--,i-1,i+1,---,n},i=1{1,--,n}. Let-
ting y, =y’;b,, we can express the objective function in
(11) as

F(y;,b,) =R}y;b, +R,b; —plog(1-y;'P;'y!)

yrrel;lep,Rijyﬁ +Riib? _lLIOg(b? _y;Pg;nyi)

- plogh?
(12)

In order to obtain the minimum value of Eq. (12) , we
need to find a set of solutions (y/,b,). In the following,

jisYi
we use a log-barrier algorithm™’ to solve the convex opti-
mization problem. For simplicity, we sety’' =y;,Q =R,

and P =P, and then differentiate (12) with respect to y’

i’

and b,.
aF(y',b,) 2uP'y
b. + I(y' 13
2 g e R SI (13)
oF(y',b,
%:QT)’,‘FZR,‘J%‘_%&:J(&') (14)

i i

Next, we use the second-order Tayler series expansion
to express Eq. (13) and Eq. (14),

2 (P—I)T
Iy +Ay) =1(y") + —F - ——
(1-y"P'y") Ay
-1_.7 -1 /\T
4MP I-: (711‘) ryZ) ! (15>
(1-y" Py ) Ay
2u
J(b,+Ab,) =J(b,) +2R,Ab, +b2Ab,, (16)
Then, we define
B dG _ 2uP’'y’
- _ 1 1_ /TP 1.7 - - y
G /.LOg( y Yy )gy dyl 1_y,TP—1y/
2 -1I\T -1_7 -1 /\T
H,:d(fz 2#(1: 7)1 4uP yT(Pily)2 (17)
Tody” 1-y"PTy (1-y'Py)
=R, b, —ulog(b,) .k, =2R,b, —i—“ L, _2Rm,+i’“
(18)

Hence, Eq. (15) and Eq. (16) are simplified as

Qbi+gy,+Hy,Ay'=(), QTy,+kb,+Lh,Abi=O <19)
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Solving Eq. (19), we have

, ] -(Q"y' +k,)
Ay'= - (H,) ™' (Qb, +g,), Ab=——F——— (20)
b,
By updating Eq. (20) , we obtain a better solution B as
Y=y +SsAy;, b,=b, +sAb, (21)

where s is the step size. If the rank of the solution B is
one, the relaxation is tight and the vector b satisfying B
=bb" is the optimal solution of Eq. (4). When the rank
of the solution B is larger than one, a leading eigenvector
b of B is used as an approximate solution. Finally, we
can obtain the reconstruction signal by % = A'diag(u)b.
In this subsection, we summarize the proposed Magni-
tudeCut method. After we obtain £ by Egs. (17) to (21),
we set X° =A% e F, where set F satisfies Eq. (1), as the
initial value of the modified Gerchberg-Saxton method' "’
(MGS) and obtain a more accurate solution. From Egs.
(17) to (20), we know that the MagnitudeCut method
only needs a real matrix vector product and real inner
product in the iteration process. Although we obtain the
result by the MGS finally, the MGS method has no sig-
nificant contribution to computational complexity. The
reason is that £ is sufficiently close to x, the MGS meth-
od requires much fewer operations than the MagnitudeCut
method. The core of the MagnitudeCut method is the in-
terior point algorithm, so the convergence of the algo-
rithm is guaranteed by the result in Ref. [9] and in fact
the function logdet is strongly convex over compact sub-

sets of the positive semi-definite cone *'.

2 Simulations

The simulations are implemented by Matlab. We im-
plement the one-dimensional and two-dimensional signal
reconstructions by the MagnitudeCut algorithm and com-
pare the signal reconstruction results by four different
kinds of transform matrices; FTGM, CWT, FTBM and
GRT.

2.1 One-dimensional signal

The original signal x € R* is shown in Fig. 1. Its pha-
ses in FTGM, CWT, FTBM and GRT are given. The
sampling number is twice the length of the original signal
and the reconstruction results £ are shown in Figs. 2 (a)
to (d), respectively. From this figure, we find that good
signal reconstruction performance from the phase of FT-
GM, CWT, FTBM, and GRT can be achieved. For sim-
plicity , we use the symbol C to denote the sampling num-
ber below.

To further illustrate the recovery results, we record the
reconstruction error E = ||x - £ | Z/ [ x Hi with different
C. For convenient observation, we set the vertical coordi-
nates as the logarithmic function - logE of the recon-
struction error in Fig. 3. The greater the value of the ver-
tical coordinates, the better the reconstruction property.
From these simulations, we can see that the original sig-
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Fig.2 Reconstruction results by four different transforms.
(a) FTGM; (b) CWT; (c) FTBM; (d) GRT

nal can be perfectly reconstructed by our MagnitudeCut
algorithm when C is greater than or equal to the twice of
the length of the original signal in FTGM and GRT. Sim-
ultaneously, the results also clearly show that when C is
equal to the triple of the original signal in FTBM, our
method can still restore signals with certain error budgets.

So, on the one hand, in order to reconstruct the signal
from a small amount of phase information under the same
E, we need to choose FTGM or GRT. On the other
hand, in the same transform domain, we can choose a set
of phase information to describe a signal whose number is
double the length of the original signal when a more accu-
rate result is required. For example, in the field of info-
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Fig.3 The reconstruction error with different transforms

rmation encryption, we can use less phase information
under FTGM to encrypt a signal.

2.2 Two-dimensional signal

In many cases, we need to deal with the two-dimen-
sional signals. In this paper, three images are chosen.
They are the moon’s surface, a clock and Lena, as shown
in Fig. 4. Supposing that the phase of each transform ma-
trix is known, the reconstructed images with C =2 are
shown in Fig. 5 to Fig. 7. The results reconstructed by the
phase of FTGM and GRT are better than those by the
phase of CWT and FTBM. Similarly, the reconstructed
results with C =4 are shown in Fig. 8 to Fig. 10. It can be
seen that with more sampling numbers, the results recon-
structed by the phase of FTGM, CWT, FTBM and GRT

are also better.

(a) (b) (e)
Fig.4 Original images. (a) Moon’s surface; (b) Clock; (c) Lena

(2) (b) (e) (d)
Fig.5 Reconstructed results of the moon’s surface by four dif-

ferent transforms with C =2. (a) FTGM; (b) CWT; (c) FIBM;
(d) GRT

1]

Fig. 6  Reconstructed results of the clock by four different
transforms with C = 2. (a) FIGM; (b) CWT; (c) FIBM;
(d) GRT

l%
l
(8)

Fig.7 Reconstructed results of Lena by four different trans-
forms with C=2. (a) FTGM; (b) CWT; (¢) FTBM; (d) GRT

(a)
Fig.8 Reconstructed results of the moon’s surface by four dif-

ferent transforms with C =4. (a) FTGM; (b) CWT; (c) FTBM;
(d) GRT

rhedrded

Fig.9 Reconstructed results of the clock by four different trans-
forms with C =4. (a) FTGM; (b) CWT; (c¢) FTBM; (d) GRT

Fig. 10 Reconstructed results of Lena by four different trans-
forms with C=4. (a) FTGM; (b) CWT; (c¢) FTBM; (d) GRT

The experimental results indicate that the two-dimen-
sional images can also be recovered from the phase under
the corresponding four transforms by the MagnitudeCut
method. As a comparison, if one wants to recover a sig-
nal of size p from the phase under FTGM or GRT, the
sampling number should satisfy C =2p. However, we
find that good reconstruction performance can be realized
with C=3p after observing a large number of simulation
results when the transform is FTBM. In the case of
CWT, we need the number of rows in the transform ma-
trix to be equal to or larger than 4p. This not only proves
the importance of phase information in the signal recon-
struction process, but also explains the significance of re-
search of the MagnitudeCut algorithm.

3 Conclusion

We propose a new algorithm called MagnitudeCut to
solve the problem of signal reconstruction from the phase-
only information in different transform matrices, such as
FTGM, CWT, FTBM and GRT. Experiments on the
one-dimensional and two-dimensional signals are simula-
ted to illustrate the feasibility of the algorithm. The merit
of the proposed algorithm is that the original signal can be
reconstructed with less amount of phase information than
the PhaseCut algorithm. Furthermore, the results show
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that the phase with FTGM and GRT can obtain better re-
sults by the MagnitudeCut algorithm than the other two
transforms. The phase information can preserve many more
important features of a signal than the magnitude informa-
tion. Therefore, if the phase information is used to de-
scribe the signal features, the requirements for the storage
and the transmission bandwidth can be reduced. Since the
PhaseCut algorithm is the basis of the scattering convolu-
tion networks, the proposed method shows that we can al-
so construct a new convolution network by the phase.
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