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Abstract: In order to classify the minimal hepatic
encephalopathy ( MHE) patients from healthy controls, the
independent component analysis (ICA) is used to generate the
default mode network (DMN) from resting-state functional
magnetic resonance imaging (fMRI). Then a Bayesian voxel-
wised method, graphical-model-based multivariate analysis
(GAMMA), is used to explore the associations between
abnormal functional integration within DMN and clinical
variable. Without any prior knowledge, five machine learning
methods, support vector machines ( SVMs ),
classification and ( CART),
regression, the Bayesian network, and C4.5, are applied to
the classification. The functional integration patterns were
alternative within DMN, which have the power to predict
MHE with an accuracy of 98%. The GAMMA method
generating functional integration patterns within DMN can
become a simple, objective, and common imaging biomarker
for detecting MHE and can serve as a supplement to the
existing diagnostic methods.
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inimal hepatic encephalopathy (MHE) is a com-

mon neurocognitive complication of liver cirrhosis,
which can result in a wide spectrum of neurocognitive im-
pairments'"’. Resting-state functional magnetic resonance
imaging (fMRI) can probe the cerebral intrinsic functional
architecture and reflect spontaneous neuronal activity at
baseline state'”, which is a useful technique for investiga-
ting the neuropathological mechanisms in MHE" .
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Brain activity at rest can be spatially organized into a set
of large-scale coherent patterns, namely intrinsic connec-
tivity networks (ICNs), including the default mode net-
work( DMN), attention networks and other networks'’.
The DMN, a resting-state network characterized by con-
sistent task-induced deactivation, is negatively correlated
with activity in the attention networks''. The spontaneous
activities in the DMN were proposed to represent inherent
patterns for expected usages'” and the altered intrinsic con-
nectivity correlated with MHE in the DMN"™"' | There is a
vast body of literature regarding the quantification of vox-
el-wised intrinsic connectivity levels of certain ICNs for
MHE"™ . Most of these studies were based on general
linear mixed models (GLMMs). One widely used GLMM-
based method models intrinsic interactions by computing
the t-statistic between groups. Another GLMM-based ap-
proach is based on the regression model, in which the con-
nectivity change of an ICN is the dependent variable, and
a clinical variable is the independent variable. In this ap-
proach, associations among clinical variables and rates of
change in brain measurements are estimated by the coeffi-
cients of the resulting regression model.

The major limitations of the GLMM-based approach
were its focus on functional specialization, and its inabili-
ty to model multivariate interactions between brain re-
gions'""". To address these problems, previous studies de-
veloped a set of algorithms that model interactions among
brain regions and a clinical variable which was called
graphical-model-based multivariate analysis ( GAM-
MA)""™' The GAMMA is a Bayesian approach to de-
tecting complex nonlinear multivariate associations be-
tween image features and a clinical variable. The GAM-
MA was employed in many neuroscience related applica-
tion, such as the brain volume morphometry of sickle cell
disease'”', and the fMRI data of Alzheimer’s disease'".

In this study, we aimed to test the hypothesis that the
alterative functional integration patterns within the DMN
can characterize MHE from healthy controls by using the
GAMMA, and the functional integration patterns are suf-
ficiently powerful to predict MHE. To test this hypothe-
sis, we first generated the DMN from resting-state fMRI
for each subject. We then applied the GAMMA method
to find the abnormalities of functional integration patterns
within the DMN. Finally, machine learning algorithms
were employed to find the predictive power of these relat-



Discrimination for minimal hepatic encephalopathy based on Bayesian modeling of default mode network

583

ed integration patterns for MHE.
1 Materials and Methods
1.1 Subjects

This study was approved by the Research Ethics Com-
mittee of Affiliated Zhongda Hospital, Southeast Univer-
sity. Thirty-two cirrhotic patients with MHE and twenty
healthy controls were enrolled after written consent. Gen-
eral information about subjects was summarized in Tab.
1. Exclusion criteria included current overt HE or other
neuropsychiatric diseases, severe organic diseases ( such
as cardiac disease, advanced pulmonary disorders, and
renal failure), taking psychotropic medications, uncon-
trolled endocrine or metabolic diseases ( such as diabetes
mellitus and thyroid dysfunction), and alcohol abuse 6
months prior to the study.

Tab.1 Demographic and clinical characteristics of subjects

Characteristic Control (n=20) MHE (n =32) p-value
Age/year 51.5+7.7 52.4+£9.3 0.72
Sex( male/female) 16/4 28/4 0.74 (Xz—test)

Education/year 8.3%2.5 7.6+2.5 0.33
TMT-A/s 47.4+14.4 75.2£19.8 <0.001
TMT-B/s 111.2 £27.6 175.4 £47.6 <0.001

DST (raw score) 43.3+9.1 25.1+7.6 <0.001
BDT (raw score) 31.2+7.9 18.5+7.2 <0.001

MHE was diagnosed by the neuropsychiatric tests, in-
cluding trail making test A (TMT-A), trail making test B
(TMT-B), digit symbol test (DST), and block design
test (BDT). DST and BDT are subtests of the Wechsler
Adult Intelligence Scale-Revised for China ( WAIS-RC).
MHE was defined if at least two of four tests were im-
paired two standard deviations beyond normative perform-
ance (i. e., TMT-A >68 s, TMT-B > 156 s, the raw
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DST score < 23, and the raw BDT score < 16). The
normative values for the local population were determined
by the results of the neuropsychiatric tests for a sample of
160 healthy controls, who were age- and education-
matched to the patients in this study.

1.2 Data acquisition

MRI data was collected using a 1.5 T scanner ( Van-
tage Atlas, TOSHIBA). The participants were instructed
to rest with their eyes closed, “not to think of anything in
particular”, and keep their heads still during fMRI scan-
ning. Functional images were collected with an echo pla-
nar imaging sequence (TR/TE =2 500 ms/40 ms, FOV
=24 cm x 24 cm, matrix = 64 x 64, FA =90°, slice
thickness/gap =5 mm/1 mm, 22 axial slices) to measure
120 brain volumes. The high-resolution, three-dimensional
T1-weighted images were also obtained with following pa-
rameters: 108 sagittal slices, FOV =256 mm X 256 mm,
matrix =256 x 256, slice thickness/gap =1.5 mm/0 mm.
The MR images were reviewed by an experienced radiolo-
gist for quality. We excluded the subjects with poor MR
image quality.

1.3 Preprocessing of resting-state fMRI

Fig. 1 and Fig. 2 display the data- and image-processing
pipelines, respectively.

fMRI data processing was carried out using FSL
(FMRIB’s Software Library, www. fmrib. ox. ac. uk/
fs1) """ The preprocessing procedures were applied in
the following steps: motion correction using MC-
FLIRT'"®; slice-timing correction using Fourier-space
time-series phase-shifting; spatial
Gaussian kernel of FWHM 5 mm; mean-based intensity

smoothing using a
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normalization of all volumes by the same factor; high-
pass temporal filtering ( Gaussian-weighted least-squares
straight line fitting, with high-pass filter cut-off of 100
s); and removal of non-brain tissue. After preprocessing,
the fMRI volumes were registered to the subject’s high-
resolution T1-weighted scan using affine registration
( FLIRT )'"*™ subsequently to space
(MNI152) images using nonlinear registration ( FNIRT)
with a warp resolution of 10 mm.

and standard

1.4 DMN generation

The preprocessed data for all subjects was analyzed
with group ICA for the fMRI toolbox ( GIFT)"™”, which
includes double principal component analysis ( PCA) re-
duction, application of ICA, and back-reconstruction for
each subject. The reason for using the GIFT was due to
the fact that the GIFT has more flexible and adjustable pa-
rameters, a more user-friendly interface, and that it can
more easily obtain data for the following GAMMA com-
pution.

Our group ICA processing procedures were carried out
according to the previous ICNs studies™ ™.
PCA, the optimal number of components was set to be 54
independent components for all participants, which was
estimated using the GIFT dimensionality estimation tool.
First, the data from each subject were reduced using PCA
according to the selected number of components. Second-
ly, the data were separated by ICA using the extended in-
fomax algorithm. Finally, independent components and
time courses for each subject were back-reconstructed.
Following back-reconstruction, the mean spatial maps for

Prior to

all subjects were transformed to z-scores for display. The
z-scores were scaled by the standard deviation of the error
term. It can reflect the degree of correlation between the
time series of a given voxel and the time series of a spe-
cific ICA component™ . Therefore, the z-scores can be
used to measure how much of the standard deviation of
the signal was from the background noise; i.e., the z-
scores represented the intensity of resting activity at each
voxel for each subject in the ICNs studies.

DMN for all participants (32 MHE and 20 controls)
were selected by decomposing all the data for each indi-
vidual into 45 independent components according to the
former studies of these three networks'® *?*. The masks
were used to analyze brain region changes in the follow-
ing GAMMA performance.

1.5 Graphical-model-based multivariate analysis

We used a Bayesian voxel-wised method, GAMMA,
to explore the associations between brain morphology and
the clinical variable. The GAMMA is a between-subject
analysis approach that is different from the methods based
on general linear models. The GAMMA is nonparamet-
ric. It can represent complex nonlinear and linear associa-

tions, and it is fully automatic; that is, the GAMMA
does not require user-specified parameters such as a sig-
nificance threshold.

To identify abnormal integration patterns for intrinsic
we discretized the DMN z-scores
(normal distribution: mean =0, and standard deviation =
1) which were generated from groups ICA. So, for sub-
ject i, if voxel X was larger than 1, we labeled this voxel
as “1” (high connectivity within DMN, active in DMN) ;
otherwise, we labeled it as “0” (lack of connectivity in
DMN, non-active in DMN). The result of the discretiza-
tion step for subject i was a high connectivity map D'.
Examples of high connectivity maps were demonstrated in
Fig.2. Then, the GAMMA can be applied to automati-
cally detect the representative voxels and generate the ROI
for each representative voxel. Also, an embedded model
validation step can determine whether the model is a sta-
tistical artifact.

We provide a simple description of the GAMMA algo-
rithm in the following. The input of GAMMA was the
collection of difference maps and a clinical variable C.
The clinical variable C was a categorical variable repre-
senting group membership. In this study, C represents ei-
ther MHE or health control. The region of interests
(ROIs), which can predict C, can be identified by the
GAMMA. These ROIs can be used as the neuroanatomi-
cal markers of C.

The GAMMA then detected a set of brain regions that
were highly predictive of C. However, because our anal-

connectivity, maps

ysis was at voxel level, brain regions were not prede-
fined. Therefore, the GAMMA also needed to determine
group voxels into regions.
brain regions characterizing group differences and group-
ing voxels into regions, were referred to as representative

The two steps, identifying

voxel detection and brain region delineation, respective-
ly. The GAMMA performed representative voxel detec-
tion and brain region delineation in an iterative fashion.
For representative voxel detection, the GAMMA is the
forward selection strategy for searching a set of representa-
tive voxels. Let RV denote the set of representative vox-
els. Initially, RV is empty, and the searching space for
representative voxels, [VS], contains all voxels. In itera-
tion k, RV contains k — 1 representative voxels, and RV =
{RV,, ..., RV, ..., RV, _,}. For voxels in [ VS], we
identify one voxel that can mostly improve the predictive
power of the representative voxel set when adding it to
RV. The predictive power of RV is quantified based on the
Bayesian Dirichlet equivalent score. Then, we add this vox-
el RV, to RV. If no such voxel exists, GAMMA then stops.
For brain region delineations, in iteration k, after identi-
fying a representative voxel RV,, we searched [ VS] to i-
dentify voxels that were probabilistically equivalent to
RV,. That was, the probabilistic association between this
voxel and C was similar to that of RV, and C. We used a



Discrimination for minimal hepatic encephalopathy based on Bayesian modeling of default mode network 585

belief map learning algorithm to solve this problem. RV,
and voxels that were probabilistically equivalent to RV,
consist of a single ROI in the label field. An example of
such ROI is shown in Fig.3, which shows the spatial distri-
bution abnormalities among MHE and the health controls.

The output of GAMMA was a conditional probability
table representing Pr(C, RV, ...,RV,, ..., RV ) and a la-
bel field to store ROI information. This information can
be further analyzed to investigate the predictive power of
certain RV.

1.6 Predictive powers evaluation

Machine learning algorithms were used to identify the
predictive powers of spatial distribution abnormalities
(ROIs generated by GAMMA) for MHE. The inputs of
machine learning algorithms were the conditional proba-
bility table representing Pr( C, RV,, ..., RV,, ..., RV))
and a label field mentioned in the above section.

To avoid algorithms bias, we applied several common-
ly used machine-learning methods, i.e., support vector
machines ( SVMs), classification and regression trees
(CART), logistic regression,
C4.5, to identify the predictive powers of ROIs.

We evaluated the predictive powers of ROIs based on
10-fold cross-validation. We evaluated the performance
of the predictive powers based on the following metrics:
sensitivity, specificity and accuracy. Finally, the accura-
cy predictive model can be obtained according to the three
metrics: sensitivity, specificity and accuracy mentioned a-
bove. This model was then applied to discriminate MHE
patients from normal controls.

Bayesian network, and

2 Results

Demographic and clinical characteristics of subjects
were displayed in Tab. 1.
differences between groups in age, gender, and educa-
tion. The neuropsychiatric tests scores were significantly
different among MHE and controls.

The Bayesian-based GAMMA methods generated a set
of brain regions (altered functional integration patterns)
in each of the ICNs to represent group membership (MHE
or controls). Then, we tested the predictive powers of
these sets of brain regions for DMN. The performances
are shown in Tab. 2. The predictive model of DMN ob-
tained an accuracy of 98% .

There were no significant

Tab.2 The performances of five machine learning methods for

DMN %
Machine learning methods ~ Sensitivity ~ Specificity ~ Accuracy

CART 100 95 98

Logistic 100 95 98

Bayesian netwark 100 95 98

SVM 100 95 98

C4.5 100 95 98

Average 100 95 98

We found that C4.5 selected only one set of patterns
(one-node tree model) for DMN (see Fig.3). We dis-
played the corresponding patterns representing root node
for DMN (see Fig.4), because the C4.5 algorithm can
choose the most predictive variable as its root node.

Tree model
for DMN

Non-active

Active

4

Controls

Fig.3 The predictive model tree of all sets of ROIs for DMN
generated by C4.5

Fig.4 Subjects in the MHE group with decreased activation in
the red ROIs selected by GAMMA

3 Discussion

To the best of our knowledge, there has been no previ-
ous attempt to focus on the abnormalities functional inte-
gration patterns within DMN for MHE. We found that the
alterative functional integration patterns in DMN can be
potential and complementary markers in early diagnosis of
MHE from normal controls.

We used the GAMMA to examine alterative functional
integration patterns within DMN for MHE and to identify
alterative patterns strongly associated with MHE. Com-
pared with the voxel-wise analysis algorithm based on the
general linear model, such as the voxel-wise t-test, the
GAMMA is nonparametric and makes no assumption
about the probabilistic distribution between DMN func-
tional integration patterns and clinical variables. The
GAMMA is an automatic algorithm and it does not re-
quire the user to select parameters, such as a significance
threshold required for a T-map in the voxel-wise t-test.

In our GAMMA analysis, we detected that MHE pa-
tients tended to have lower intrinsic connectivity within
DMN. The phenomenon may be associated with metabol-

. . = (9
ic disturbances by ammonia™, cerebral edema',

macroscopical cerebral atrophy™™. A recent study found
that the DMN was impaired in MHE patients through a
cross-sectional comparison'” . Longitudinally, Qi and his
colleagues ' found that progressive abnormalities in rest-
ing-state brain activity are associated with MHE develop-
ment. Thus, it is expected that altered functional connec-

tivity within DMN can be a potential indicator for differ-

and
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ential diagnosis of MHE. Abnormal functional integration
patterns indicated that the reduction of reaction capabili-
ties of endogenous and exogenous stimuli were reduced in
MHE patients. This finding may be an important neuro-
pathophysiological mechanism and may lead to various
neurological impairments in MHE (e. g., difficulties in
learning ability, working memory, response inhibition,
visual perception, and visuoconstructive ability), consid-
ering the fundamental role of attention in these cognitive
abilities.

More importantly, we used five machine-learning
methods to generate classifiers, in order to avoid bias
with respect to the functional form of the classifier. We
found that the altered functional integration in DMN can
be used as a potential biomarker to distinguish MHE pa-
tients from patients without MHE or controls. This result
is exciting, especially given the fact that there is currently
no standardized diagnostic test available for MHE'" * . In
addition, it should be noted that resting-state fMRI is a
convenient technique that can be easily performed by cli-
nicians.

Furthermore, MHE patients can benefit from early di-
agnosis and subsequent treatment, and they can have the
possibility to reduce negative effects for patients’ cogni-
tive functions. However, MHE patients have few recog-
nizable clinical symptoms. From the research point of
view, our findings suggest that in MHE studies of the
mechanisms underlying neurocognitive deficits, we need
to include a functional integration patterns alterative for
DMN as a factor. That is, the diagnostic model for MHE
should include not only commonly used neuropsychiatric
tests variable, but also functional integration patterns
within DMN.

4 Conclusion

In this paper, we find that alternative functional inte-
gration patterns in DMN can distinguish MHE from
healthy controls by using the GAMMA, and the function-
al integration patterns of DMN have strong power in pre-
dicting MHE. The GAMMA method generating function-
al integration patterns of DMN may become a simple, ob-
jective, and common imaging biomarker for detecting
MHE and can serve as a supplement to existing diagnostic
methods.
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