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Abstract: A demodulator based on convolutional neural
networks (CNNs) is proposed to demodulate bipolar extended
binary phase shifting keying (EBPSK) signals transmitted at a
faster-than-Nyquist (FTN) rate, solving the problem of severe
inter symbol interference (ISI) caused by FIN rate signals.
With the characteristics of local connectivity, pooling and
weight sharing,
demodulate and eliminate ISI. The results show that with the
symbol rate of 1.07 kBd, the bandwidth of the band-pass filter
(BPF) in a transmitter of 1 kHz and the changing number of
carrier cycles in a symbol K =35, 10, 15, 28, the overall bit
error ratio (BER) performance of CNNs with single-symbol
decision is superior to that with a double-symbol united-
decision. In addition, the BER performance of single-symbol
decision is approximately 0.5 dB better than that of the
coherent demodulator while K equals the total number of
carrier circles in a symbol, i.e., K =N =28. With the symbol
rate of 1. 07 kBd, the bandwidth of BPF in a transmitter of
500 Hz and K =5, 10, 15,28, the overall BER performance of
CNNs with double-symbol united-decision is superior to those
with single-symbol decision. Moreover, the double-symbol
united-decision method is approximately 0.5 to 1.5 dB better
than that of the coherent demodulator while K = N =28. The
demodulators based on CNNs successfully solve the serious ISI
problems generated during the transmission of FTN rate bipolar
EBPSK signals, which is beneficial for the improvement of
spectrum efficiency.
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a six-layer CNNs structure is used to

‘ x T ith the rapid development of information technolo-

gy, many wireless broadband access technolo-
gies, such as WiMAX, 3G and HSDPA"™, have been
widely used, and the radio spectrum has become the most
essential source for all countries. Hence, it will be advan-
tageous to transmit data symbols with a faster-than-

Received 2015-08-22.

Biographies: Ouyang Xingchen (1992—), female, graduate; Wu Lenan
(corresponding author), male, doctor, professor, wuln@ seu. edu. cn.
Foundation item: The National Natural Science Foundation of China
(No. 6504000089) .

Citation: Ouyang Xingchen, Wu Lenan. Faster-than-Nyquist rate com-
munication via convolutional neural networks-based demodulators[J].
Journal of Southeast University ( English Edition), 2016,32(1):6 — 10.
DOI: 10.3969/j. issn. 1003 —7985.2016.01. 002.

Nyquist (FTN) rate. However, since the improvement of
spectrum efficiency via FTN rate transmission is always
accompanied with severe inter-symbol interference (ISI),
selecting a suitable demodulator for the FTN rate receiver
is a very important challenge.

The current method of solving the demodulation prob-
lem of FTN rate signals mainly consists of two steps:
using channel equalization and inverse filtering to elimi-
nate ISI, then adopting regular methods, such as coherent
demodulation or integral decision of amplitude. From the
aspect of the frequency domain, adopting the method of
channel equalization and inverse filtering to eliminate ISI
is like using an equivalent band-stop filter ( for carrier
modulation signal) or a high-pass filter ( for baseband sig-
nal) to compensate for the high-frequency component of
the receiving signal. This inevitably increases the out-of-
band noise and therefore results in the deterioration of the
signal to noise ratio (SNR) before demodulation.

The convolutional neural network (CNN) is a type of
artificial neural network ( ANN), which has been success-
fully applied to image recognition, computer vision and
speech recognition'*® . In the application of image recog-
nition, the input for CNN is the image pixels without any
pre-processing, which avoids the complex procedures of
feature extraction and data reconstruction'”’. These
achievements inspire us to try CNNs for the demodulation
of FTN signals.

Bipolar extended binary phase shifting keying ( bipolar
EBPSK) is proposed as an energy efficient version of EB-
PSK, which is a type of spectral efficient modulation
method" .

demodulator for faster-than-Nyquist rate signals, which

This paper, therefore, proposes a novel CNN

directly operates on the input sampling sequence of bipo-
lar EBPSK signals. Since the popular BPSK modulation
is also a special category of bipolar EBPSK modulations,
it will ensure the universality of our method.

1 Bipolar EBPSK Modulation System and Fas-
ter-than-Nyquist Rate Communication

1.1 Bipolar EBPSK modulation system

EBPSK, as a type of asymmetric modulation with high
spectrum efficiency, is defined as"’
A, sin27f.t
A,sin2wft

ost<r

7<t<T

20() :{



Faster-than-Nyquist rate communication via convolutional neural networks-based demodulators 7

Bsin(2mf.t + 6) O<st<r,0<O=<mw

& (1) :{Azsiannfct r<t<T ()
where A;, A, and B are the amplitudes; 6 is the modula-
ting angle; T denotes the symbol duration; f, is the carrier
frequency; g,(t) and g, (t) represent the modulated sig-
nals for transmission “0” and “1”, respectively. The
number of carrier cycles in a symbol is N = Tf,, which is
chosen according to both the size of the CNN specific ker-
nel and the number of CNN layers. 7 = K/f, denotes the
duration of the phase changing with K<<N carrier cycles.

For convenience in the following analyses, by setting 6
=m, w,=2nf,, A, =B=A and A, =0, the bipolar EB-
PSK as a simple version of the EBPSK can be
obtained as'"”!
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Bipolar EBPSK signals can degenerate into classical
BPSK signals by setting 7 =T.

1.2 Faster-than-Nyquist communication

According to the first Nyquist criterion''"", for the ideal
low-pass channel with the bandwidth of W, the symbol
transmission rate must be less than 2W Bd, where 2W Bd
is defined as the Nyquist rate. For the ideal band pass
channel, the corresponding Nyquist rate is W Bd.

For faster-than-Nyquist rate communication, the sym-
bol transmission rate is faster than 2W Bd, where the
bandwidth of the low-pass channel is just W. With the
same symbol rate, FTN communication can improve the
spectrum efficiency directly. Additionally, the noise fig-
ure can be reduced, and the sensitivity of the receiver is
increased. The existing method for demodulating ISI
symbols in FTN communication deteriorates the signal to
noise ratio (SNR). Therefore, finding a novel demodula-
tor for FTN communication is important for enhancing
both the spectrum and power efficiency.

2 Convolutional Neural Networks

CNN as a type of ANNs is characterized by the local
connectivity, pooling ( subsampling) and weight sha-
ring'"”' . Instead of using the fully connected hidden layers
in traditional ANNs'?', a special network structure with
several pairs of convolution and pooling layers is intro-
duced in CNN. In the convolution layer, the local per-
ceptive field (convolutional kernel) is adopted to connect
the layers locally. Then, the input data feature can be ex-
tracted and the number of weights can be deduced. Dur-
ing the weight sharing, all the neuron nodes convolve
within the same convolutional kernel in the feature map,
and the feature diversity is realized by various kernels.

The pooling (subsampling) layer can reduce the computa-
tional complexity and keep the original features. Finally,
all the inputs are combined in the fully connected layers,
and the classification and output results are generated"*' .

Since CNN is highly capable of self-learning and self-a-
dapting, it is relatively simple to classify the new data
with the pre-trained CNN. The feature extraction and the
data reconstruction in the traditional classification methods
1. These properties above allow CNN
to demodulate the bipolar EBPSK signals with serious ISI.

3 EBPSK Demodulation Based on CNN

can also be avoided"

3.1 System model

In the traditional EBPSK systems, the demodulation
methods based on the pattern recognition, such as ANN
and support vector machine (SVM), are inaccurate and
time consuming“ﬁ] , where the features are extracted man-
ually from the hidden input layers. Therefore, we exploit
the CNN feasibility in the bipolar EBPSK system for the
FTN rate communications, and the system model is
shown in Fig. 1, where the FTN rate system is realized by
reducing the bandwidth of the modulated signals. The
first band-pass filter ( BPF) causes ISI and the second
BPF in the receiver can reduce the noise from the band.

Source Code stream

DL-CNN

classification

Fig.1 System model of bipolar EBPSK system using CNNs
for FTN rate communication

3.2 Multi-symbol united-decision

For the bipolar EBPSK signals at the receiver, severe
ISI is caused by the narrow bandwidth of both the first
BPF and the channel, and the condition of statistical inde-
pendence cannot be satisfied in the classic demodulator.
Thus, in the consideration of the above situation, the
multi-symbol united-decision for CNNs classification is
proposed in this paper. The input of CNN is the sampling
of n symbols after BPF, and the output of CNN is the
code block of those n symbols.

1) When n =1, the traditional single-symbol independ-
ent detection can be performed.

2) When n =2, the input is the waveform sampling of
the adjacent two symbols, and the output is one of the
four code blocks: “1 17, “1 07,0 17,0 0”.

4 Experiments and Results
4.1 Experimental setup

1) Pre-training and design of CNNs

Using CNNs to classify the new input data, the con-
necting weight coefficients between the internal neuron
nodes must be first trained. The noise is added during the
processes of pre-training for practical considerations. In
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this paper, CNN consists of two convolution layers, two
pooling layers, one input layer and one output layer. The
size of convolutional kernel is set to be 5. For both per-
formance and efficiency considerations, the number of it-
erations is set to be 10.

2) Design of bipolar EBPSK system

In bipolar EBPSK modulation, the carrier frequency is
f. =30 kHz; the sampling frequency is f, =300 kHz; the
number of carrier cycles in a symbol is N =28; and K
takes the value of 5, 10, 15, 28, respectively. The band-
width of BPF in the transmitting end takes 1 000 and 500
Hz, respectively, and the symbol rate of this system is
about 1. 07 kBd.

For each value of K, the bit error ratio ( BER) per-
formances of both the CNN double-symbol decision and
single-symbol decision are given. When K =28, the bi-
polar EBPSK degenerates into the classic BPSK, and we
compare the BER performance of CNNs demodulation
with coherent demodulation in the additive white Gaussian
noise ( AWGN) channel. The training SNR for CNNs
is —15 dB.

4.2 Results

When the bandwidth of BPF in the transmitter is W =
1 kHz, and K =5,10, 15,28, the BER performance com-
parisons are given in Fig. 2, where the overall perform-
ance of CNNs with single-symbol decision outperforms
the double-symbol decision. When K = N =28, the sin-
gle-symbol decision is about 0.5 dB better than the coher-
ent demodulator.

The similar comparisons for W =500 Hz are given in
Fig. 3, where the overall performance of CNNs with
double-symbol decision is superior to those with single-
symbol decision, and when K =N =28, the double-sym-
bol decision method is about 0.5 to 1.5 dB better than
the coherent demodulator.

The simulation results shown in Fig. 4 are the compari-
sons of CNN demodulation performance with different
values of the modulation parameter K.

Fig.4(a) shows that when W =1 kHz, the BER per-
formance of CNN with single-symbol decision is im-
proved with the increase in K. However, Fig.4(b) dem-
onstrates that when W =500 Hz, the critical condition of
the FTN rate is satisfied for CNN with double-symbol de-
cision, and the signals with K < N are better than that
with K = N. This means that in the FTN rate and using
multi-symbol CNN discrimination, the energy efficiency
of bipolar EBPSK modulations is superior to the classical
BPSK modulation.

5 Conclusion

A novel demodulator based on CNNs for faster-than-
Nyquist rate communication is proposed in this paper.
The multi-symbol CNN discriminator is used to demodu-

—v— Single-symbol
—>— Double-symbol
—&— Coherent

BER

-6 1 1 1 1 I
10706 -15 -14 -13 -12 -11
SNR/dB
(a)
1072

—v— Single-symbol
—&— Double-symbol

Z10-4
=
10°°
-6 \ \ . \ )
10 -15 -14 -13 -12 -11 -10
SNR/dB
(b)
10721 .
g —&— Single-symbol
f —v— Double-symbol
10731
e
=
=
104
1073
-15 -14 -13 -12 -11 -10
SNR/dB
()
-2
10 —v— Single-symbol
—&— Double-symbol
1073
=
=
=
1074
10 -5 1 1 1
-15 -14 -13 -12 -11 -10
SNR/dB

(d)
Fig.2 BER performance of demodulators via single/double-
symbol CNN and coherent detection when W =1 kHz. (a) K=
28; (b) K=15; (c¢) K=10; (d) K=5
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Fig.3 BER performance of demodulators via single/double-
symbol CNN and coherent detection when W =500 Hz. (a) K=
28; (b) K=15; (c) K=10; (d) K=5
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Fig.4 Comparison of CNN demodulator with different values
of K. (a) W=1 kHz, single-symbol CNN decision; (b) W =500 Hz,
double-symbol CNN decision

late the binary signal, and generalization to M-ary ( where
M >2) modulated signals still needs implementation. The
results demonstrate that the proposed CNN classification
methods are suitable for the demodulation of the FTN rate
communication systems.
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