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Abstract: It is difficult to know all the relations between Snort
rules. To deal with this problem, the topological relations
between Snort rules are classified based on the set theory, and
a method for calculating the topological relations between
Snort rules is proposed. In the existing methods for analyzing
the relations of Snort rules,
determined only according to the header information of the

the relations are usually
Snort rules. Without considering the actions of Snort rules,
the proposed method improves upon the existing methods and
it can classify and calculate the topological relations between
Snort rules according to both headers and options information
In addition, the proposed method is
the functional language Haskell. The
show that the topological
between Snort rules can be calculated rapidly and effectively.
The proposed method also provides an important basis for
conflict detection in the succeeding Snort rules.
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of Snort rules.
implemented by

experimental results relations

he intrusion detection systems(IDS) are very impor-
T tant for network security. The IDS are mainly clas-
sified into anomaly-based IDS and signature-based IDS.
Most IDS use signature-based detection techniques, such
as Snort. Snort will monitor packets on the network and
compare them against a pre-defined set of rules, that is,

1 .
"' The effectiveness of secur-

the well-known Snort rules
ity protection provided by Snort mainly depends on the
Snort rules. Unfortunately, since it is difficult to know all
the relations between Snort rules, managing and configu-
ring Snort rules is a difficult and error prone task for net-
work administrators. Therefore,
some problems. For example, when packet P arrives,

Snort will compare P with all the rules. If multiple rules

Snort may experience
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match P, all these rules are checked and the most severe
alert message is then generated. That is to say, Snort tries
comparisons for all of the rules even when packet P never
matches some rules and instead match some other rules.
The following two rules r;, and 7, try to find the word
“HTTP” or “FTP” between the 4th and 7th characters in a
payload of the TCP packet. Snort will try to compare a
certain packet with r, and r,, although a packet cannot
match them at the same time.

r;: alert tcp 192.168.1.0/24 any — > any any (con-
tent: " HTTP"; offset: 4; depth: 7; msg: " HTTP
matched";)

r;: alert tep 192.168.1.0/24 any — > any any (con-
tent: "FTP"; offset: 4; depth: 7; msg: "FTP matched";)

Snort may also provide redundant or contradictory alert
messages when a set of erroneous and poorly-organized
rules is given. For example, in the following two rules,
r,is a redundant rule to r,, because rules r, and r, have
the same actions to deal with packets that come from the
node with IP address of 192. 168. 1. 117.

r,: alert tcp 192.168. 1. 0/24 any - > any any ( con-
tent: "HTTP"; offset: 4; depth: 7;)

r.: alert tcp 192.168. 1. 117 any — > any any ( con-
tent: "HTTP"; offset: 4; depth: 7;)

The major reason of these problems is that the header and
the options of multiple Snort rules overlap, and the coming
packets will match these overlapped multiple rules simulta-
neously. In this case, we can say that there are some rela-
tions between these overlapped rules, such as being com-
pletely overlapped, partially overlapped, and so on.

If we can know the relations between Snort rules be-
forehand, it can help administrators to omit the unneces-
sary comparison of packets with rules and improve the
matching speed of Snort. In addition, it also can help ad-
ministrators to find contradictory or redundant rules, and
then decrease conflicts between rules. Therefore, to im-
prove the overall efficiency of Snort, it is very important
to analyze the relations between Snort rules.

Research on the analysis of relations of rules has re-
ceived much attention. For example, some approaches
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focused on the analysis of the firewall rules””". Accord-
ing to the relations of firewall rules, Al-Shaer et al. 2.
dentified all kinds of anomalies that could exist in each
pair of firewall rules, and presented a set of techniques and
algorithms to automatically discover anomalies in a central-
ized and distributed firewall. Yuan et al™. proposed a
framework for modeling an individual and distributed fire-
wall, and designed a static analysis algorithm to discover
various misconfigurations such as policy violations, incon-
sistencies and inefficiencies. In our previous works” "', we
interpreted firewall rules’ header fields as range values,
and developed a method to analyze the spatial relationships
of firewall rules. However, the above methods cannot be
used for the analysis of Snort rules’ relations, which are
different from firewall rules. This is because both the head-
er and options of Snort rules need to be analyzed, while fire-
wall rules only require the analysis of the headers.

Some research focuses on the string matching algorithm
of Snort™™”', thereby improving its detection efficiency.
For example, Zhao et al. " used a two-step dynamic rule
matching algorithm of Snort to improve its detection effi-
ciency. In addition, some research focuses on how to
manage the IDS rules'"'™ . For example, Kuang et al. """
proposed a three-dimensional organization to organize the
increasingly massive intrusion detection rules. There was
also some research that deals with Snort rules by using

191 For example, Chen et al. """ proposed a

hardware'
novel two-step pattern decomposition scheme to remove
hidden redundancies in the Snort rules database. The
above mentioned IDS related works mainly focused on
how to examine the string positions of IDS rules, and
proposed some methods to control the matching orders of
rules and to achieve the goal of high speed string matc-
hing. They cannot be used directly for the analysis of
relations between Snort rules:

In this paper, in order to decrease the unnecessary
comparison of packets with rules, and discover whether
there are conflicts between the rules, we propose a meth-
od that can calculate the topological relations between
Snort rules based on the set theory, which is developed
from the spatial relationships calculation method of fire-
wall rules. The major contributions of this paper are that
we define topological relations of two Snort rules based
on the set theory, propose a method to calculate the to-
pological relations between two rules with string-matching
conditions, and use the functional programming language
Haskell to implement the proposed methods seriously and
concisely. The experimental results show that the topolo-
gical relations between Snort rules can be calculated rap-
idly and effectively.

1 Simplified Snort Rules
1.1 Structure of Snort rules

Snort is one popular open-source network IDS that uses

a set of rules, i. e. so-called signatures. The following
codes illustrate an example of a common Snort rule.

alert udp $ HOME _NET any — > any any (msg:"
BACKDOOR netthief runtime detection"; content: " | 00
00 00 00 00 00 00 821"; depth: 8; offset: 17; threshold:
type limit, track by _src, count 1, seconds 600; metada-
ta: policy security-ips drop; reference: url, www3. ca.
com/ securityadvisor/virusinfo/virus. aspx? ID = 16078;
classtype: trojan-activity; sid: 7760; rev:2;)

Each Snort rule consists of two logic sections, the rule
header and the rule options'"'. The header contains an ac-
tion and some key fields that are used for comparison with
the packet’s header. The action determines how to deal
with packets when the conditions of header and options
are met. The key fields in a rule’s header are usually pro-
tocol, source IP addresses, destination IP addresses,
source port, and destination ports information.

Rule options form the heart of Snort’s intrusion detec-
tion engine, which contains alert messages and informa-
tion. According to options, Snort will determine which
parts of the packet should be inspected and whether the
rule action should be taken. Rule options are divided into
four categories: payload, non-payload,
post-detection. In this paper, we focus on payload,
which are options that all look for data inside the packet

payload. The commonly used payloads in Snort rules are

general, and

content, depth, offset, uricontent, and so on.
1.2 Analysis of Snort rules

A Snort rule consists of header and options. In this pa-
per, a header of a Snort rule is represented as a range-
matching condition (represented as RMC), options part is
represented as string-matching conditions ( represented as
SMC) for a packet payload. We simplify Snort rules to a
subset of Snort rules which consists of RMC for a packet
header and an SMC for a packet payload. For a rule r
with an identification number r. sid, it is represented as
the following triplet:

(r.sid, r.RMC, r. SMC)
The r. RMC is a list of range values shown as below:

r.RMC =([a,, b,], [a,, b1, [a,, b1, ..., [a,, b,])

The k-th (ke [0, n]) range value, [a,, b,], specifies
the lower bound and upper bound values of the k-th key
field in a packet header.

In this paper, we use the content option and its two
modifiers, depth and offset, as an SMC for a packet pay-
load, for the reason that the content keyword is one of the
more important features of Snort. r. SMC is represented
as the following three-tuple:

r. SMC = ( Content, Offset, Depth)



An analysis method of topological relations between Snort rules 23

where Content is a single string, in conjunction with the
Depth and Offset values, which is usually used to find a
signature in the packet. The offset keyword specifies
where to start searching for a pattern within a packet. The
depth keyword specifies how far should be searched into a
packet for the specified pattern. For example, if the vari-
able $§ HOME _NET of the rule shown in Section 1.1 is
equal to 192.168. 1.0/24, r. sid, r. RMC and r. SMC

are represented as follows:

r. sid =7760
r.RMC = ((17, 17), (192.168.1.0, 192.168. 1. 255),
(0, 65535), (0.0. 0.0, 255.255.255.255),
(0, 65535))
r.SMC = (" | 00 00 00 00 00 00 00 82

"8, 17)

1.3 Topological relations of two rules

We define that R represents a set of rules and P, repre-

sents the whole packets set. For a packet p € P, and a rule
re R, we define the following two functions:

True if the header of p satisfies r

tch_ RMC =
fateh - (P, 1) {False otherwise
True if the payload of p satisfies r

match_SMC(p, 1) = {False otherwise

By the above two functions, we use symbols P _RMC(r),

P _SMC(r) and P(r) to represent a set of packets that

only match r. RMC, a set of packets that only match r.

SMC, and a set of packets that match both ». RMC and
r. SMC, respectively, which can be defined as follows:

P RMC(r) ={peP, \ match RMC(p, r) =True} (1)

P_SMC(r) ={peP, | match_SMC(p, r) =True} (2)

P(r)y={peP, \ match _RMC(p, r) = True and
match _SMC(p, r) =True} =
P_RMC(r) NP_SMC(r)

(3)

The topological relations between rules r, and r; are re-
presented as TR(r,, r;). Using the inclusion relations of
P(r;)) and P(r;), TR(r, r;) ={equal, inside, contain,
disjoint, overlap} is defined as

equal when P(r,) = P(r;)
inside when P(r,) CP(r;)

TR(r,, r;) ={contain  when P(r,) DP(r,) (4)
disjoint  when P(r,) NP(r,) =
overlap  otherwise

We use the symbols TR _RMC(r,, r) and TR SMC
(r;, r;) to represent the topological relations between the
two rules’” RMCs and SMCs. They can be defined in the
same way as TR(r,, r;) by using the inclusion relations
of P_RMC(r,) and P_RMC(r;), the inclusion relations

of P_SMC(r,) and P_SMC(r,), respectively. The ima-
ges of all TR(r,, r;)s for any two rules r, and r; in two
dimensions ( source port and destination IP address) are
shown in Fig. 1.
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Fig. 1  Images of five topological relations of two rules.

(a) TR(r;, rj) =disjoint; (b) TR(r;, rj) =contain; (c) TR(r;, rj) =
inside; (d) TR(r;, rj) =equal; (e) TR(r;, ri) = overlap

2 Calculation of Topological Relations

In this section, we will describe how to calculate TR _
RMC(r;, r;), TR_SMC(r,, r;), and TR(r,, r,).

2.1 Calculation of TR_RMC(r;, r))

The calculation of TR_RMC(r;, r;) is similar to that
of spatial relationships in our previous work. The basic
idea for calculating the topological relations of RMCs be-
The first
phase is the calculation of topological relations of a single
key field. Each single key field is represented as a range
value. Then, according to the inclusion relations of the
set theory, we calculate the topological relations between
two rules’ RMCs. In the second phase, the topological
relations of all single key fields are composed into one to-
pological relation.

tween two rules is divided into two phases.

2.2 Calculation of TR_SMC(r,, r;)

An SMC is a string-matching condition for packet pay-
load, which is represented as a three-tuple ( Content, Off-
set, Depth) . The three keywords specify the range of data
within which pattern matching should be done. For exam-
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ple, when a packet header satisfies the header of the fol-
lowing rule r,, and if the packet’s payload contains the
string of “cgi-bin/phf” from the 4-th byte to the next 20
bytes, the rule r, will give alert.

ry: alert tcp any any — > any 80 (content: "cgi-bin/
phf"; offset: 4; depth: 20;)

We define TR _SMC(r,, r;) to represent the topologi-
cal relations between two rules’” SMCs, which can be de-
termined by the inclusion relations of P_SMC(r;) and
P _SMC(r;). We represent a packet that contains the pat-
tern “ax” from the 1st byte to the next 2 bytes as P[1 -2,
“ax”]. We can find that the packet P only matches r,.
SMC and cannot match r,. SMC at the same time. In this
case, we say that the topological relation between the r,.
SMC and r,. SMC is disjoint topological relation.

r,. SMC: ("ax", 1, 2), r,. SMC: ("ay", 1, 2)

To implement the calculation of TR _SMC(r,, r;), we
define the following three functions CE, to CE,.

True if P_SMC(r,) CP_SMC(r,)
CE (r,r) = { .
! False otherwise
True if P_SMC(r,) 2P _SMC(r,)
CE,(r, r;) = { .
! False otherwise
CE,(r;,r) =
True if P_SMC(r,) ={} or P_SMC(r,)) ={J}
{ False otherwise

(3)

According to Eq. (5), TR_SMC(r,, r;)s can be de-
fined as

TR _SMC(r,, r) =

equal if CE, =True and CE, =True
inside if CE, =True (6)
contain if CE, =True

disjoint if CE, =True

overlap otherwise

That is to say, if we can find the conditions that make
three functions CE, to CE, return True or False, then we
can decide TR _SMC(r,;, r;). To describe the implemen-
tation algorithm of CE, to CE,, we first suppose three
premises M, to M;.

M,: SMCs of two rules r, and r; are r,.. SMC = (¢, 0,,
d;) and T SMC = (c,., 0;, dj) , respectively.

M,: Variables m, n represent the lengths of two strings
c; and c;, respectively.

M,: Variables x, y represent the position ranges of the
initial characters of strings c; and c;, respectively.

Based on Eq. (6), the implementation algorithm of CE,
is shown as follows.

Algorithm 1 ((c;,0,,d,), (c;,0;,d,), m, n)

Input: (c;,0,,d,), (¢, 0, dj), m, n.

Output: True/False.

Initialization int x=y =0, A={}, B={};

for each s in [0, m —1]
if(exists ¢; in n characters from the s-th character of
;)
Add s to A;
for each x in [0, d,-m+1], yin [o;, d,-n+1]
for each s in A
if((not ((y> =0,) & (y< =d,-n+1))) &
(y-x==9))
Add (x, y) to B;
if(A # {} and B={})
Return True;
else
Return False;

As shown in Algorithm 1, it should satisfy the follow-
ing conditions D, to D, when CE, returns True.

D,:

D,: String c, contains one or more c;.

D,: There are no payloads of packets that match r,.
SMC but do not match r,. SMC.

For example, if we suppose that r,. SMC = (“xyzab”,
1,7) and r,. SMC = (“ab”, 1,9), respectively, condition
D, is equivalent to 1 <x=<3 and 1 <y=<38. Since string c,
=“ab” is the substring of string c¢,, condition D, is also
satisfied. The payload of each packet that satisfies r,.
SMC should contain the pattern “xyzab”, and the pattern
should be searched in the range of {12345, 23456,
34567}. The payload of each packet that satisfies r;. SMC
should contain the pattern “ab”, and the pattern should be
searched in the range of {12, 23, 34, 45, 56, 67, 78,
89}. The search range of characters “ab” in the pattern
“xyzab” of r,. SMC should be in {45, 56, 67}, which is
the subset of search range of pattern “ab” in r;. SMC;
therefore, the payloads of all the packets match r,. SMC
and . SMC at the same time. That is to say, condition
D, is satisfied and at this time, we say that the TR _SMC
(r;, r;) =inside.

Function CE, is used to determine whether TR _ SMC
(r,, r;) =contain. The implementation of CE, is similar
to the implementation of CE,. We omit the description.

To find the conditions that make function CE, return
True, we divided them into the following four cases ac-
cording to the position relations of two strings ¢, and c;.

The first case is that ¢, does not overlap c; at all. Its
implementation algorithm is shown as follows:

Algorithm 2 ((c;,0,,d,), (¢, 0 dj) , m, n)

Input: (c;,0,,d), (c;,0;,d), m, n.

Output: Setl.

Initialization int x =y =0, Setl = {};

for each x in [0, d;-m+1], yin [o;, d,-n+1]
if((y>=x+m) | (y+n< =x))

o0, <x<d,-m+1 and 0,<y<d,-n+1.
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Add (x, y) to Setl;

Return Setl;

The second case is that m > n and c, includes c;. Its im-
plementation algorithm is shown as follows:

Algorithm 3 ((c;,0,,d)), (c;,0;,d;), m, n)

Input: (¢;,0,,d,), (¢;,0,,d), m, n.

Output: Set2.

Initialization int x =y =0, Set2 ={}, A={};

for each s in [0, m —1]

if ((in the n characters from the s-th character in c,,
there exists ¢;) && (s< =m-n))
Add s to A;
if(A=={})
Return Set2;
else
{for each x in [0,, d, -m+1], yin [o;, d,-n+1]
for each s in A
if (y==x+5)
Add (x, y) to Set2;
Return Set2; }

The third case is that the tail of ¢, shares the common
sub-strings with the forepart of c;. Its implementation al-
gorithm is shown as follows.

Algorithm 4 ((c;,0,,d,), (¢, 0 dj) , m, n)

Input: (c;,0,,d,), (¢;5 05 dj), m, n.

Output: Set3.

Initialization int x =y =0, Set3 ={}, A={};

for each s in [0, m —1]

if((in the overlapped m — s characters from the s-th
character in ¢, and the 0-th character in c there are the
same substrings) && (s >m —n))
Add s to A;
if(A ={})
Return Set3;
else
{for each x in [o0,, d,-m+1], yin [o,, d,—n+1]
for each s in A
if(y==x+5)
Add (x, y) to Set3;
Return Set3; }

The final scenario is that the tail of ¢, shares the com-
mon sub-strings with the forepart of ¢,. Its implementa-
tion algorithm is shown as follows:

Algorithm 5 ((c;,0,,d,), (¢ 0, dj) , m, n)

Input: (c;,0,,d), (¢, 0;,d), m, n.

Output: Set4.

Initialization int x =y =0, Set4 ={}, A={};

for each s in [0, m —1]
if((in the overlapped s + 1 characters from the O-th
character in c¢; and the (n — s —1)-th character in c;, there
are the same substrings) && (s<n-1))
Add s to A;
if(A=={})
Return Set4;

else
{for each x in [o0,, d,-m+1], yin [o;, d,—n+1]
for each s in A
(y+n-1==x+5)
Add (x, y) s to Set4;
Return Set4;
}
Algorithms 2 to 5 describe that when the strings ¢, and
c; satisfy the position relations of each case, whether there
are (x, y) pairs that make TR _SMC(r,, r;) not disjoint-
ed. If there are these kinds of pairs, they will be added to
Setl to Set4. For example, when r,. SMC = (“xyz”, 1, 3)
and r;. SMC = (“ab”, 5, 6), there is a pair of (x, y) =
(4, 5) that makes the conditions of Algorithm 2 be satis-
fied. At this time, TR SMC(r,, rj) is not the disjoint
relation because there will be packet payloads that satisfy
both r,. SMC and r. SMC, such as P[1—6, “xyzdab”].
Therefore, only when Setl to Set4 are all empty, TR _
SMC(r,, r) is the disjoint relation. In addition, we on-
ly consider that ¢, includes ¢; when m > n in the second
case. In the following algorithm, we consider how to
deal with the case when c;, is included in c;.
Algorithm 6 ((c;,0,,d,), (¢, 05 dj) , m, n)
Input: (c,,0,,4d,), (¢, 0 d/.), m, n.
Output: True/False.
Initialization Setl = {}, Set2 ={}, Set3 ={}, Set4 =
{}
Setl =Casel((c;,0,,d,), (c/., 0, dj) , m, n)
if(m> =n)
Set2 = Case2((c;,0,,d,), (¢;,0;,,d), m, n)
else
Set2 = Case2((c,., 0;, dj) , (¢;,0,,d), n, m)
Set3 = Case3((c;, 0,,d,), (cj, 0;, dj), m, n)
Set4 = Case4((c;,0,,d,), (¢;,0;,d), m, n)
if(Setl = J && Set2 = (J && Set3 = J && Setd = )
Return True;
else
Return False;

2.3 Calculation of TR(r,, r;)

The calculation of TR(r,, r;) only needs to compose
TR _RMC(r;, r;) and TR_SMC(r,, r;). For example, if
TR _RMC(r,, r;) and TR_SMC(r, r;) are equal or
inside relations, based on the set theory and Egs. (1) to
(4), TR(r, r;) can be calculated as follows:

(TR _RMC(r;, r;) =Equal or Inside) A
(TR _SMC(r;, r;) =Equal or Inside)
(P_RMC(r) CP_RMC(r))) A
(P_SMC(r) CP_SMC(r))&
(P_RMC(r,) NP_SMC(r,)) S(P_RMC(r,) N
P_SMC(r)<P(r) CP(r) s
TR(r;, r;) = Equal or Inside
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The implementation algorithm of two topological
relations’ composition is shown as follows:
Algorithm 7 (rel,, rel,)
Input: rel,, rel,.
Output: TR(r;, 1;).
Initialization {
Boolean flagl = flag2 = flag3 =0;
Relation rel,, rel,;
}
if (((rel, = =Equal)
((rel, = =Equal)

|| (rel, = =Inside) ) &&
|| (rel, = =1Inside)))

flagl =1;
else if (((rel, = =Equal) | (rel, = =Contain) ) &&
((rel, = =Equal) || (rel, = =Contain)))
flag2 =1;
else if ((rel, = =Disjoint) || (rel, = = Disjoint))
flag3 =1;

if (flagl && flag2)
else if (flagl)

TR(r,, rj) = Equal;
TR(r;, 1) = Inside;
else if (flag2) TR(r;, r;) = Contain;
else if (flag3) TR(r,, r;) =Disjoint;
else TR(r,, r;) = Overlap;
Return TR(r,, rj.);

3 Experiments and Discussion

We developed a prototype system for our proposal on
Intel Core i5-2400 processor with 4GB of RAM. The
composition of the prototype system is shown in Fig. 2.
The inputs of the prototype sytem are RMCs and SMCs of
n Snort rules. The extraction of RMCs and SMCs accord-
ing to n Snort rules is a manual operation in this paper.
The functions for calculating TR_RMC (r,, r), TR_
SMC(r;, r;), and TR(r,, r;) are implemented by the
Haskell programming language.

In this paper, we only implemented the topological
relations calculation of rules, which have the form of &

RMCs of n

Snort rules
—_—

Calculate TR_RMC(r;, T )

TR_RMC (r;, 1) }——>

: Compose TR(r;,
(i,je[0,n-11]) TR_RMC(r,.1;) r)s
SMCs of n and
Snort rules|  Caleulate  ITR_SMC(r,,r;) TR_SMC(r;,r;)

0 TR SMC (1

isTj

(i,je[0,n-1])

- =

Fig.2 Prototype system

range matching key fields and one string matching con-
tent. Therefore, not all the Snort rules are the analysis
objects of our proposed method, such as the Snort rules
that have two or more content options, the rules that have
uricontentoptions, and so on.

To validate the applicable scope of our proposed meth-
od, we divided each Snort rule file into two parts: ana-
lyzable rules and not analyzable rules. The results are
shown in Fig. 3. According to Fig. 3, we analyzed twelve
Snort rule files, where their total numbers of rules range
from approximately 80 to 400, and the percentage of
analysis objects is shown in Tab. 1. From the results, we
can see that only rpc. rules have no objective rules, and
other rule files have at least over 50% objective rules.
Therefore, our proposed method can be applied to most
Snort rule files to calculate the topological relations be-
tween rules.

No Content | Only have one Content |
option
Analyzable | Have Content and ()ffsell
rules
Rl}‘;ﬁﬁ,t}ﬁ}’e | Have Content and Depth|
Snort Have Content,
rules Offset and Depth
Not Have two or more Conlent options;
analyzable[—] Have Uricontent opti.ons;
rules Have flag: A + options;

Have dsize > 128 options;
And so on.

Fig.3 Classification of Snort rules

Tab.1 Percentage of analyzable Snort rules

Number of Number of Number of analyzable rules Percentage Percentage of
Snort rule files Snort rules not analyzable No Content Have Content of not analyzable analyzable
rules option option rules/ % rules/ %
Exploit 235 97 16 122 41 59
Ftp 83 19 0 64 23 71
Icmp-info 93 0 79 14 0 100
Oracle 325 14 0 311 4 96
Policy 75 35 0 40 47 53
Rpc 167 167 0 0 100 0
Smtp 97 46 0 51 47 53
Specific-threats 149 34 0 115 23 77
Sql 91 9 0 82 10 90
Web-cgi 370 15 304 51 4 96
Web-iis 143 16 108 19 11 89
Web-php 145 20 95 30 14 86

To evaluate the efficiency and performance of our pro-
totype system, we first select approximately 10 to 140
rules from five commonly used Snort rule files, such as

exploit. rules, ftp. rules, and so on. Then, we calculate
the topological relations between any two rules pairs of
each rule file, which have no duplicate pairs, and evalu-
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ate their time and memory consumptions. For example, if
a rule file only has five rules, their topological relations
of any no duplicate rule pairs are calculated, and the ex-
perimental results are shown in Fig. 4. The triple of
(1324, 1325, inside) shown in Fig. 4 demonstrates that
two Snort rules with sid 1324 and 1325 have the inside to-
pological relation.

File Edit Actions Tools Help

S ¥L0 QDeEEN-

Prelude > : load " tcsl0. hs"

[1 of 2] Conpiling IDSnev

[2 of 2] Conpiling Main

ok, nodules loaded; IDSnev, Main.
(0. 08 secs, 34281232 bytes)

# Main > sigPairList

[ (1324, 1325, Inside) , (283, 1324, Disjoint) , (283, 1325,
Overlop) , (283, 300, Disjoint) , (283,302, Disjoint) , (300,
1324, Disjoint) , (300, 1325, Overlop) , (300,302, Disjoint) ,
(302, 1324, Disjoint) , (302, 1325, Disjoint) ] (0.03 secs,
4172060 bytes )

# Main > |

(IDSnev. hs, interpreted )
(tes10. hs, interpreted)

Fig.4 Topological relations of five rules

The detailed experimental results are shown in Tab. 2
and Tab. 3. Tab.2 shows the time consumptions when 10
rules are increased per time, and Tab. 3 shows the corre-
sponding memory consumptions. From these results, we
can find that the topological relations between Snort rules
can be calculated with reasonable time and space require-
ments when the numbers of rules range from approximate-
ly 10 to 140. Therefore, in small sets of Snort rules, our
proposed method can be used.

Tab.2 Time consumption of each rule file S
Number of rules . . .

in each file Exploit Ftp Policy  Specific-threats  Sql
10 0.08 0.11 0.09 0.08 0.08
20 0.09 0.09 0.08 0.08 0.09
30 0.09 0.09 0.09 0.09 0.11
40 0.12 0.12 0.12 0.14 0.12
50 0.12 0. 14 0.14 0. 14
60 0.16 0. 14 0.14 0. 14
65 0.16 0.16 0.16 0.16
82 0.16 0.16 0.16
90 0.16 0.17
100 0.17 0.17
110 0.20 0.20
115 0.23 0.22
134 0.25

The analysis method of topological relations between
Snort rules is essential before conflict detection. Although
the proposed method cannot be used to detect the conflicts
of Snort rules directly, they can be determined by the
analysis results and actions of the Snort rules.

Tab.3 Memory consumption of each rule file =~ MB
Nu'mber of ru les Exploit Ftp Policy  Specific-threats ~ Sql
in each file

10 35.67 36. 84 35.65 36. 63 35.59
20 42,12 42.18 42.13 43. 61 42.13
30 48.61 48.13 48.59 50. 59 49.10
40 54. 64 54.63 55.12 57.58 55. 61
50 61.07 61.09 65.03 62. 06
60 67.59 67.58 71.54 68. 57
65 74. 06 70. 58 78.51 75.51
82 80. 58 85.55 83.61
90 87.05 92.51
100 94.07 99. 02
110 100. 55 105. 45
115 107. 03 109. 01
134 118.02

4 Conclusion

In this paper, we propose a method to calculate the to-
We use the
Haskell programming language to implement our pro-
posed method. Experimental results clarify that the topol-
ogical relations between Snort rules can be calculated with
reasonable time and space consumptions.

Our future research will focus on developing an exten-
sional function to deal with all kinds of Snort rules. We
will also further improve the system so that it can deal

pological relations between Snort rules.

with a large number of Snort rules.
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