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Abstract: To further explore the human visual system (HVS),
the perceptual grouping (PG), which has been proven to play
an important role in the HVS, is adopted to design an effective
image quality assessment (IQA) model. Compared with the
existing fixed-window-based models, the proposed one is an
adaptive window-like model that introduces the perceptual
grouping strategy into the IQA model. It works as follows:
first, it preprocesses the images by clustering similar pixels
into a group to the greatest extent; then the structural
similarity is used to compute the similarity of the superpixels
between reference and distorted images; finally, it integrates
all the similarity of superpixels of an image to yield a quality
score. Experimental results on three databases ( LIVE, IVC
and MICT) show that the proposed method yields good
performance in terms of correlation with human judgments of
visual quality.
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mage quality assessment occupies a very important po-

sition in numerous fields and applications, such as im-
age acquisition, compression, transmission and restora-
tion. Since human beings are the ultimate receivers of any
visual stimulus, it is essential to develop a perceptual
model to closely correlate with the human visual system
(HVS).

Objective quality assessment methods can be classified
into three types'"': 1) Full-reference ( FR),
ideal “reference” image is available for comparison;
2) Reduced-reference (RR), where partial information a-
bout the reference image is available; 3) No-reference

where an

(NR), where the reference image is not accessible. This

Received 2015-09-16.

Biographies: Wang Tonghan (1984—), male, graduate; Shu Huazhong
( corresponding author), male, doctor, professor, shu. list @ seu.
edu. cn.

Foundation items: The National Natural Science Foundation of China
(No. 81272501), the National Basic Research Program of China (973
Program) ( No. 2011CB707904), Taishan Scholars Program of Shan-
dong Province, China (No. ts20120505).

Citation: Wang Tonghan, Zhang Lu, Jia Huizhen, et al. Image quality
assessment based on perceptual grouping[J]. Journal of Southeast Uni-
versity ( English Edition), 2016, 32(1):29 —34. DOI: 10. 3969/j. issn.

1003 -7985.2016.01.006.

paper focuses on the FR methods.

In the past decades, great efforts and huge advances
have been made in FR methods. Here, we briefly review
some representative ones. The traditional metrics such as
the peak signal-to-noise ratio ( PSNR) and the mean
squared error (MSE) did not correlate well with human
opinions'”. As a milestone in the development of IQA
models, the structural similarity (SSIM) "' surpassed the
previous ones since it had a better correlation with the hu-
man perception. It was based on the assumption that the
HVS was highly adapted for extracting structural informa-
tion. Then, several SSIM-based metrics were proposed in
Refs. [4 —6]. Sheikh et al. """ proposed the visual infor-
mation fidelity ( VIF), which took the FR IQA problem
as an information fidelity problem and chose the amount
of information shared by the reference image and the dis-
torted one as the similarity. Based on the observation that
the visual information in an image is often redundant and
the HVS understands an image mainly based on its low-
level features, Zhang et al. ™ proposed the feature-simi-
larity (FSIM) index, which employed two features ( the
phase congruency and the gradient magnitude) to compute
the local similarity map. Unlike the SSIM’s average poo-
ling, the FSIM adopted a weighting strategy for the poo-
ling. In their later work, Zhang et al. " proposed a visu-
al saliency-induced metric ( VSI), based on the assump-
tion that an image’s visual saliency map had a close rela-
tionship with its perceptual quality. In the VSI, three
components ( visual saliency, gradient modulus and chro-
minance) were first computed by locally comparing the
distorted image with the reference one via similarity func-
tion, and then the visual saliency part was used as a
weighting function to measure the importance of a local
image region. Note that the weighting pooling may im-
prove the IQA accuracy against those with average poo-
ling to some extent, but it may be costly to compute the
weights. In addition, this pooling can make the predicted
quality scores become more nonlinear to human opin-
jions""”. The image gradient is a popular feature in IQA
since it can effectively capture image local structures, to
which the HVS is highly sensitive. Based on these obser-
vations, Xue et al. " proposed the gradient magnitude
similarity deviation (GMSD) index, where image gradi-
ent magnitude maps were first computed, then the stand-
ard deviations of these maps were treated as the overall im-
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age quality score. A comprehensive survey and comparison
of state-of-the-art FR-IQA models can be found in Refs.
[11—12].

1 Perceptual Grouping Induced IQA Metric
The sophisticated FR-IQA models are normally divided

. []0] . . . .
into two steps : local quality computation and pooling.
The two-step FR-IQA can be summarized as shown in

Fig. 1.

Reference
image

Local quality
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Fig.1 Architecture of the two-step FR-IQA

During the first step, a local fixed-sized window strate-
gy is usually adopted to filter an image. This strategy was
blindly applied to the pixels in the filter window regard-
less of these pixels’ intensity. Take the SSIM as an exam-
ple, it utilized an 11 x 11 window, within which the
SSIM index was calculated for the reference image and
the distorted one, respectively. The window moved pixel-
by-pixel to traverse the whole image to generate the local
quality maps. This fixed-sized window strategy may not
correlate well with the HVS. For example, the SSIM was
insufficient for assessing images with blur distortion or
' " The reason may be that if the distortion of one
pixel in the filtering window makes its intensity very dif-
ferent from its neighborhood, the mean value of pixels in
the window will then deviate from the counterpart in the
reference image. Thus, this distortion changes the SSIM
index value, but may not change the human perceived

noise

quality in some cases, e.g., the number of contaminated
pixels is much fewer than that of the overall pixels in an
image or these pixels are not visually salient.

To solve this problem, we adopt the perceptual group-
ing (PG) to make the IQA score changes correlate better
with the changes in human perception. Wertheimer'"”
showed that the PG strategy plays an important role in hu-
man visual perception. He also listed several key factors
that bring about visual grouping, e. g. similarity, prox-
imity, and good continuation, etc. With the PG strategy,
the HVS can easily capture the variation among the
changed pixels since these pixels are much more visually
salient now. The superpixel algorithm is one of the PG
methods that clusters the similar pixels into perceptually
meaningful atomic groups. The PG methods capture im-
age redundancy and provide a convenient description to
compute image features, and they reduce the complexity of
the follow-up image processing tasks''"'. A broad range of
computational vision problems are closely connected with
the PG. Spatially non-uniform regions of support can be
identified using GP techniques'” . Superpixel algo-
rithms'*™” have been used as a preprocessing step in the

segmentation algorithms. Traditional superpixel algorithms
like Ncuts'® and Trubopixel'®' are too expensive to gener-
ate the superpixel of an image. In this paper, we select the

simple linear iterative clustering ( SLIC) '™

strategy since it
yielded the best performance for now.

We propose here integrating the SLIC into the IQA met-
ric and adapt that for grayscale images. To demonstrate the
efficiency of the PG strategy, we simply use the SSIM as
the IQA method. Our method is, thus, superpixel-wise,
instead of pixel-wise. Experimental results show that the

proposed method yields better overall performance.
1.1 Simple linear iterative clustering

The simple linear iterative clustering ( SLIC) can be
implemented by the following steps:
1) In the initial step, the centers are sampled on a reg-

ular interval length of L = /]W , where ¢ and N are the
number of centers and the total number of pixels of a
grayscale image, respectively.

2) For each center, it iteratively searches for the best
matching pixels under the guidance of intensity similarity
and spatial proximity. By doing this, it guarantees both
the homogeneity and the compactness.

3) When the distance of the new clustering center and
the previous one is smaller than a threshold, the iteration
stops.

By default, the SLIC only needs to specify one param-
eter, i. e. the number of expected superpixels c¢. Note
that the parameter m in Ref. [ 14] is a measure of the
maximal grayscale distance in a cluster. To demonstrate
the importance of the PG strategy to the HVS, we simply
set m =0 to not take into account the spatial distance. In
other words, we only care about the intensity similarity,
i.e. those pixels having the most similar intensity are
considered a superpixel. The smaller a value m takes, the
more tightly the resulting superpixels will adhere to image
boundaries'""' .

Fig. 2 shows an example of the generating superpixels
for the white noise distorted version of “parrots” with its
difference mean opinion score (DMOS) of 0. 128 906" .
We can see from Fig. 2 that the small value of m yields an
irregular size and shape but with tight adherence to
boundaries. This makes the similar pixels being clustered
into a group as much as possible. Thus, the small chan-
ges in this group between the reference image and the dis-
torted one can be accurately reflected by this measure. In
addition, this is in line with the HVS since it is easier for
human beings to capture the changes in the regions with
intensity homogeneity.

1.2 Similarity measure

To show the effectiveness of this PG strategy, we
apply it to the window-based similarity metric SSIM for
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Fig.2 Illustration of superpixels generated by SLIC. (a) Color
version; (b) Grayscale version; (c) Superpixels generated by SLIC with
¢=100 and m =0; (d) The 4th superpixel (excluding the black back-
ground) .

simplicity. As is known, the SSIM can be treated as the
milestone of IQA despite its prediction performance which
has been outperformed by the later developed metrics,
such as weighting SSIM, multiscale SSIM, FSIM, VSI,
GMSD, etc.

For each superpixel generated by the SLIC, we com-
pute its SSIM"':

(2/1«7,(/.1/‘\, +K1)(20-xy +K2)
(W, +pu, +K) (o) + 0, +K,)

SSIM(x, y) = @Y
where p, and ., are the sample means of x and y, respec-
tively; o, and ¢, are the standard variances of x and y,
respectively; o, is the sample correlation coefficient be-
tween x and y. K, and K, are included to avoid instabili-
ty. In practice, their values depend on the dynamic range
of ul + ,u,f and o, + o, respectively. In our situation, x
and y are the corresponding superpixels for the reference
image and the distorted one, respectively. For simplicity,
we obtain the overall image quality by the mean pooling:

N
Score(X,Y) = lﬁz SSIM(x;,y.) (2)
i=1

Throughout this paper, we set the parameters K, =91
and K, =21. These values, however, are somewhat arbi-
trary. For generating the superpixels, we set the parame-
ters ¢ =800 and m =0, respectively.

In summary, our metric starts with a perceptual group-
ing of the image ( clustering the image pixels into super-
pixels), then computes the superpixel-wise similarity, and
finally adopts the mean pooling to obtain the final score.

2 Performance Evaluation

To test the performance of the PG-based metric, we
use the following three databases.

1) The LIVE IQA database''. It contains 29 reference
images, each with five different types of distortion at 5 to
6 levels. The distortion types include JP2K, JPEG, WN,

Gblur, and FF (simulated by JP2K compression followed
by channel bit errors). These distortions reflect a broad
range of image impairments, such as edge smoothing,
block artifacts and random noise. The total number of
distorted images (excluding 29 reference images) is 779.

2) MICT™. There are 98 images of 768 x 512 pixels
for both JPEG and JP2K groups. Six quality scales are
selected for each distortion type.

3) IVC™. Tt consists of 10 original images and 235 dis-
torted images generated from four different processings.

We calculate three commonly used performance indi-
ces, i.e. the Spearman’s rank ordered correlation coeffi-
cient (SROCC) which measures the prediction monoto-
nicity, Pearson’s (linear) correlation coefficient ( LCC)
which is related to the prediction linearity (considered as
the measure of prediction accuracy), and the root mean
square error (RMSE) which evaluates the prediction con-
sistency. To compute the latter two indices, we use a lo-
gistic regression function to reduce the nonlinearity of
predicted scores''. A value close to 1 for SROCC and
LCC indicates good performance for quality prediction.
Whereas, for RMSE, the smaller the value, the better
prediction consistency it yields.

We compare the proposed method to five state-of-the-
art and representative FR-IQA models, including PSNR,
SSIM"™', FSIM", GMSD"” and VSI". Note that the
source codes of all the other metrics are obtained from the
original authors.

We can see from Tabs. 1 to 3 that the top three metrics

Tab.1 SROCC for different metrics on LIVE database

Metrics JP2K JPEG WN Gblur FF All
PSNR  0.9538 0.9315 0.9915 0.8730 0.9362 0.909 2
SSIM  0.9714 0.9582 0.9784 0.9385 0.9657 0.9250
FSIM  0.9818 0.9625 0.9798 0.9831 0.9707 0.961 0
GMSD 0.9823 0.9607 0.9847 0.9751 0.9658 0.9546
VSI 0.9700 0.9534 0.9881 0.9703 0.964 4 0.946 4
PG +SSIM 0.9797 0.9586 0.9722 0.9747 0.9743 0.967 6

Tab.2 LCC for different metrics on LIVE database

Metrics JP2K JPEG WN Gblur FF All
PSNR 0.9661 0.9561 0.9738 0.8988 0.9439 0.936 6
SSIM  0.9655 0.9682 0.9382 0.9227 0.9597 0.938 8
FSIM  0.9610 0.9485 0.9769 0.9566 0.9534 0.9493
GMSD 0.9701 0.9457 0.9864 0.9638 0.9658 0.951 1
VSI 0.9573 0.9615 0.9712 0.9356 0.9331 0.943 1
PG +SSIM 0.967 0 0.9564 0.9829 0.9580 0.969 6 0.959 7

Tab.3 RMSE for different metrics on LIVE database

Metrics JP2K JPEG WN Gblur FF All
PSNR  8.078 1 7.5982 7.5348 9.8598 7.3281 8.098 3
SSIM  7.1626 6.6138 10.971 8 8.4055 6.4162 7.961 2
FSIM  7.5173 8.2050 6.5741 6.7390 6.7449 7.2665
GMSD 7.5681 8.3143 6.6778 6.2913 6.0033 7.137 4
VSI 7.7178 7.0272 8.1349 7.7345 7.9704 7.685 6
PG +SSIM 6.6096 7.7297 5.4348 6.3904 5.5562 6.4973
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are the PG-based metric ( 16 times), GMSD (15
times), and FSIM (12 times) on the whole LIVE data-
base in terms of all the three criteria ( SROCC, LCC,
RMSE).

In addition, we also draw the scatter plots of subjective
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scores against objective scores predicted by these FR-
IQA metrics in Fig. 3. The greater the linear relationship
against DMOS and the tighter clustering it yields, the bet-
ter performance the metric yields in terms of the correla-
tion with subjective ratings.
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Fig.3 Scatter plots of predicted quality scores against the subjective quality scores (DMOS) by representative FR-IQA metrics on
the whole LIVE database. (a) PSNR; (b) SSIM; (c) FSIM; (d) VSI; (e) GMSD; (f) PG +SSIM

From Fig. 3, we can see that the proposed metric (PG
+ SSIM) yields good linear prediction for all of the dis-
tortion types, including JP2K, JPEG, WN, BLUR and
FF. In addition, we also list the performance of different
IQA models on the IVC and MICT databases'** and TVC
database™' in Tab. 4.

To demonstrate the effectiveness of the proposed adap-
tive window-like model, we tabulate the performance of
the improved version of SSIM, namely, MS-SSIM™ and
its perceptual grouping-induced one (PG + MS-SSIM) in
Tab. 5.
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Tab.4 Performance on IVC and MICT databases
IVC database MICT database

Method

SROCC LCC RMSE SROCC LCC RMSE

PSNR  0.6884 0.7032 0.8662 0.6132 0.6503 0.063 4
SSIM  0.9018 0.9119 0.4999 0.8794 0.8887 0.573 8
FSIM  0.9262 0.9376 0.4236 0.9050 0.906 5 0.528 3
GMSD 0.9146 0.8926 0.5494 0.8528 0.8582 0.6424
VSI 0.8993 0.9120 0.4999 0.8659 0.8697 0.6177
PG +SSIM 0.9326 0.9422 0.4082 0.9276 0.9323 0.4526

Furthermore, the PG-based metric is computationally
efficient. When combining the PG with the SSIM on a
2.66 GHz Intel Core2 Quad CPU with 4 GB of RAM,
the metric takes about 0.51 s to measure the similarity of
a pair of 720 x 480 grayscale images ( taken from the
LIVE database), which is faster than FSIM (It takes
about 0.75 s).

Tab.5 Performance of the original version and perceptual grouping-induced version of MS-SSIM

LIVE database

IVC database MICT database

Method
SROCC LCC RMSE SROCC LCC RMSE SROCC LCC RMSE
MS-SSIM 0.9512 0.946 8 7.438 0 0.884 7 0.893 4 0.547 4 0.886 4 0.8935 0.562 1
PG + MS-SSIM 0.978 3 0.968 4 6.171 0 0.941 6 0.948 9 0.3892 0.937 9 0.940 8 0.443 5

3 Conclusion

To make the changed pixels in an image more visually
salient to the HVS, we use the PG method to cluster the
similar pixels into a group (or superpixel). Then, we
calculate the similarity on superpixels, which are more
perceptually relevant than the fixed-sized windows com-
monly used in the existing IQA methods. Compared with
the state-of-the-art FR-IQA models, the experimental re-
sults show that the proposed metric yields the best overall
performance in terms of correlation with human judg-
ment. The proposed framework is generic which allows
us to use any PG methods.

Better performance can be expected if the assessment is
applied in a multiscale framework''.
includes applying the proposed image quality metric to

evaluate medical images in different modalities'™' .

Further work also
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