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Abstract: In order to improve the efficiency of operating
rooms, reduce the costs for hospitals and improve the level of
service qualities, a scheduling method was developed based on
an estimation of distribution algorithm ( EDA). First, a
scheduling problem domain is described. Based on assignment
constraints and resource capacity constraints, the mathematical
programming models are set up with an objective function to
the basis of the
descriptions mentioned above, a solution policy of generating
feasible scheduling solutions is established. Combined with the
the EDA-based
algorithm is put forward to solve scheduling problems.
Finally, simulation experiments are designed to evaluate the
scheduling method. The orthogonal table is chosen to
determine the parameters in the proposed method. Then the
genetic algorithm and the particle
algorithm are chosen for comparison with the EDA-based
algorithm, and the results indicate that the proposed method
can decrease the makespan of the surgical system regardless of
the size of operations. Moreover, the computation time of the
EDA-based algorithm is only approximately 5 s when solving
the large scale problems, which means that the proposed
algorithm is suitable for carrying out an on-line scheduling

minimize the system makespan. On

specific constraints of operating theatres,

swarm optimization

optimization of the patients.
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estimation of

n the basis of minimizing operational costs, how to
maintain a high quality of health care becomes one

of the most challenging issues for hospitals. An effective
and efficient scheduling system of operating theatres pro-
vides an appealing solution to the challenging problem'".
Currently, many researchers have tried to develop effi-
cient models and heuristic algorithms for operating theatre
scheduling problems. For example, Aringhieri et al.'"
studied the joint operating room planning and advanced
scheduling problem. Choi et al. "' provided an approach
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to optimize a block surgical schedule that adhered to the
block scheduling policy. Vijayakumar et al. "' introduced
a mixed-integer programming model for a multi-period,
multi-resource, patient-priority-based surgical case sched-
uling problem. Zhao et al.' studied how to schedule
elective surgeries to multiple operating rooms in ambula-
tory surgical settings. Augusto et al. ' considered that
patients’ recoveries were allowed in operating rooms, and
presented a Lagrangian relaxation method for solving the
operating theatre scheduling problem. Devi et al. ' de-
veloped a general framework of algorithms to schedule
operating rooms optimally by forecasting the surgery
time. Wang et al. "' focused on finding a satisfactory sur-
gery scheduling to patients and efficiently managing
scarce medical resources in laminar-flow operating thea-
ters. Wang et al. " proposed a new method to solve the
surgery scheduling problem with a downstream process.
Xiang et al. "' proposed a mathematical model to efficient-
ly solve surgery scheduling problems. Souki et al. '
proposed a set of dispatching rule-based heuristics and
three meta-heuristics to solve a scheduling problem in two
stages.

A review of the available literature indicates that there
is a dearth of research that explicitly considers surgeons’
availability. It cannot fully adapt to the practical applica-
tions. In this study, the availability of surgeons is inher-
ent in operating rooms.

Moreover, some of those methods have been adopted
for operating theatre scheduling problem such as the ge-
netic algorithm, particle swarm optimization, and ant col-
ony optimization approach. Population-based optimiza-
tion algorithms have become popular for solving operating
theatre scheduling problems. Therefore, this paper seeks
to find an effective algorithm aimed at solving the above
scheduling problems. As a relatively new population-
based optimization algorithm, the EDA has been success-
fully developed to solve a variety of optimization prob-
lems in academic and engineering fields'"'"*'. However,
there has been no research concerning the EDA for sol-
ving the operating theatre scheduling problems so far. In
this paper, the problem is explored with surgeons’ availa-
bility constraint. An EDA is developed to solve the
scheduling problem.

1 Model Description and Formulations

The operating theatre scheduling problem is concerned
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with providing each surgical case with an operating room,
a recovery bed and a starting time for the operation. It
takes into account the constraint of surgeons’ availability
with the aim of minimizing the makespan.

According to Ref. [10], the assumptions are given as
follows: 1) Each patient undergoes only one surgical op-
eration in an operating room, and then he or she is trans-
ferred to an available recovery bed. 2) Each operating
room is multifunctional, so that all surgical operations
can be operated in any operating room. 3) There is no
time needed for transferring a patient from an operating
room to a recovery bed. 4) All surgical cases operated in
the same time period are arranged successively in the
same operating room. 5) One surgeon cannot perform
two surgical cases in the same operating room at the same
time. 6) Each patient occupies at most one available re-
covery bed at a time. 7) Not every surgeon is available
all the time. 8) Operations can be performed by available
surgeons.

Fig. 1 illustrates the process of a surgical case in an op-
erating theatre. On a given day, Case A is scheduled to
be operated. If the surgeon who is scheduled to operate
Case A is available, Case A can be operated in an
available operating room, and then can be transferred to
an available recovery bed. Otherwise, Case A cannot be
operated on that day.

Exit
T No
An An
Surgical Surgeon Yes  ayailable available
Case A available? operating recovery
room bed

Fig.1 Operating theatre scheduling problem

It is common expectation that a patient should receive
treatment and recover as soon as possible. Also, most re-
search has made efforts to minimize the makespan to in-
crease the operating room’s utilization. Let N be the num-
ber of patients, and the number of patients in the recovery
room can be represented by N,. Thus, the scheduling ob-
jective is to minimize the makespan of the surgical sys-
tem, which is defined as follows:

1
min max{2(0k+Ek)} (D)
k=1

I<k<N I<I<N,

where O, is the duration of surgical operation on patient i,
and E, is the duration of recovery on patient i.

According to assumption 1), an assignment constraint
is needed. At any time, a patient can be assigned to at
most one surgeon on a given day. In other words, a sur-
gical case can be assigned only once. The following

equation must be satisfied:

P
Sx,=1  Vi=12_..,N (2)
m=1

where x,, =1 if patient i can be performed in operation

room m and O otherwise. P is the number of operating
rooms.

Based on assumption 3), the scheduling with no-wait
constraint is considered. The starting time of each
patient’s recovery is the ending time of operation, which

should satisfy the following requirement:

D, -C, =0, VYi=12_..,N (3)

where C, and D, indicate the operation starting time and
recovery starting time of patient i, respectively.

According to assumption 4), to guarantee the continui-
ty of operations, patients i and j do not overlap at one
time. The following relationship must be satisfied:

N P N
2 Zyiim + 2
i=1 m=1 i=1

i=1 m=

P

yjim 2 1
1

where y, =1 if patient i is sequenced immediately before
patient j in operating room m, and O otherwise.

Based on assumption 5), any surgeon cannot perform
two surgeries on a given day simultaneously. Let S be the
number of surgeons. The following inequality must
be obeyed:

C,=D +0,-M3 -w,, —~0,, =Y
Yij=1,2..Ni#j; Ym=12 .,P
Vp=12,..S8 (5)

where w, , =1 if surgeon p perform patient i and O other-

wise, ancll M is an infinity number.

According to assumption 6), to ensure that the number
operations performed cannot exceed the maximum number
of recovery beds on day ¢. Let R be the number of availa-
ble recovery beds on day 7. The following equation must

be obeyed:

R

Zfb,[ =1 Vi=12.,N (6)
b=1

where f, . =1 if patient i is assigned to the b-th recovery
bed and O otherwise.

To deal with surgeons’ availabilities, make the sched-
ule fully adapt to the practical applications, the detail is
described based on the mentioned assumptions 7) and 8)
as follows:

C, +0, -M(1l —~w,,) <F,
Vi=1,2..N, Vp=12..8VYqg=12..0
(7

where F_ is the completing time of time block g; Q is the
number of surgeon time blocks and M is an infinity num-
ber.

We should ensure that a starting time of every surgical
operation starts from ¢ =0. That is

D, = 0, Vi=12 .,N (8)

i i

Consequently, the scheduling problem contains the ob-
jective function (1) and the constraints (2) to (8).
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2 EDA-Based Scheduling Algorithm

As a relatively new paradigm in the field of evolution-
ary computation, the estimation of distribution algorithm
employs explicit probability distributions in optimiza-
tion'”™ . A modified EDA algorithm is built for the op-
erating theatre scheduling problem considering the availa-
bility of surgeons. Combined with the specific constraints
of operating theatres, an adaption of the EDA is presen-
ted. The steps are introduced as follows.

Step 1
surgeon is available or not. If he or she is not available,
exit the algorithm, otherwise go to Step 2.

Step 2 Encoding. Each individual of the population
denotes a solution, which can be expressed by an integer

N
Z Ljs
=

Determine availability. Determine whether a

number sequence with the dimension of L. L =

where i, is the index of operation.

Step 3  Initialization. Determine the population size
(PopSize). In order to guarantee diversification in the
population, PopSize individuals in the L-dimensional
search space are initialized randomly. To prune the search
space and to remove the infeasible solutions in the range,
the range of the L-dimensional vector is [1, N].

Step 4  Generate feasible scheduling solutions. For
any individual, an infeasible solution means that the total
operation time exceeds the duration of all time blocks of

o N
the surgeon. SetS, = Y Y (w,,0, +D, - F,), Yp,
g=1 i=1

where D is the starting time of time block ¢. If S, >0,
go back to Step 3; otherwise, go to Step 5.

Step 5 Fitness value function. The objective is to
minimize the makespan. To maintain its nonnegative and
maximal, the reciprocal of the maximal makespan is se-
lected as the fitness function, and the fitness of each indi-

!
vidual is calculated according to fit = 1 / 2 (O, +E), 1
k=1

<I<N,

Step 6  Probability model. The EDA produces new
population by sampling a probability model. In this pa-
per, the probability model is designed as a probability
matrix P. The element p,(g) of P represents the proba-
bility that patient i appears before or in position ¢ of the
operation sequence at generation g. The value of p, refers
to the importance of a patient when deciding the opera-
tions order''”. First, select the superior sub-population
with the best MP(MP = BPopSize, where 0 < <1) solu-
tions. Then, the probability matrix P is initialized ac-

cording to the following equation:

] MP
(g=1)==N1Y01 i, j
pilg =1 =p X L) Vijen
where
19(g) = 1 patient i appears before or in position ¢
i (&)= {0 else

Step 7 Updating mechanism. After generating a new
population, it determines the superior sub-population with
the best MP solutions. Then, the probability matrix P is
updated according to the following equation:

MP
, 1) =(1 - . YN 1
pg+1) =1 —y)p.(g) +iMP; J(g+1)

where y € (0, 1) is the learning rate of P.

Step 8 Replacement. In each generation of the EDA,
the new individuals are generated via sampling according
to the probability matrix P. For every position ¢, patient i
is selected with probability p,. If patient i has already ap-
peared, then p, (k>t) =0 and all the elements of P will
be normalized to maintain each row summing up to 1. An
individual is constructed until all the patients appear in the
sequence. In such a way, a population of PopSize indi-
viduals is generated.

3 Simulation and Analysis

To evaluate the presented algorithm performance, the
computation times and makespan values as the perform-
ance measurements are chosen. The program is coded in
Visual C + +, on a 2. 10-GHz portable computer with 2
GB of RAM running Windows 7. The results and analysis
are given as follows.

To compare the system performance of proposed ap-
proach with two benchmarks which are the genetic algo-
rithm ( GA)" and the particle swarm optimization
(PSO) algorithm'”" effectively, some variables are de-
fined.

T,-T
R, =—=—'x100% is defined as the decreased rate of

1
results obtained by the EDA compared with the results ob-

tained by the GA and PSO, where T, and T, represent the
min( average makespan of the GA, average makespan of
PSO) and average makespan of EDA, respectively. The
larger the R, value, the better the performance.

Ty — T,
R, = e I 100% is defined as the decreased

ITar
rate of results obtained by the EDA compared with the re-
sults obtained by the GA and PSO, where T,,, and T,,,
represent the min( average delay time of the GA, average
delay time of PSO) and average delay time of the EDA,
respectively. The larger the R, value, the better the per-
formance.

The durations of surgical operation and recovery are
randomly generated from a discrete uniform distribution in
the range of U[60, 1 060], U[2 880,4 520], respective-
ly. Sand Q=4, N, =15, R=25, P =5, and the regular
capacity is equal to 12.

3.1 Parameter setting

The difficulty of solving the operating theatre schedu-
ling problem is closely associated with the problem size.
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The PopSize, the index of superior sub-population 8 and
the learning rate oy need to be determined in the proposed
method. Different combinations of these parameter values
are listed in Tab. 1. The orthogonal table L25(53) is cho-
sen; the EDA is run 20 times independently and the aver-
age values of objective function ( AVOF) values are ob-
tained by the EDA during 20 times. The orthogonal table
and the obtained AVOF values are listed in Tab. 2.

Tab.1 Parameter levels

Factor levels

Parameters
2 3 4 5
PopSize 30 40 50 60 70
B 0.2 0.3 0.4 0.5 0.6
y 0.1 0.3 0.5 0.7 0.9

Tab.2 Orthogonal table and AVOF values

Experiment Factor
n}:meer PopSize B v AVOF
1 1 1 1 326.02
2 1 2 2 323.82
3 1 3 3 331.03
4 1 4 4 342.64
5 1 5 5 329.83
6 2 1 2 323.82
7 2 2 3 321.62
8 2 3 4 327.83
9 2 4 5 365.57
10 2 5 1 336.84
11 3 1 3 339.64
12 3 2 4 315.81
13 3 3 5 324.62
14 3 4 1 314.41
15 3 5 2 324.62
16 4 1 4 337.64
17 4 2 5 332.43
18 4 3 1 333.23
19 4 4 2 318.82
20 4 5 3 321.22
21 5 1 5 320.82
22 5 2 1 329.23
23 5 3 2 326.02
24 5 4 3 323.82
25 5 5 4 331.03

According to the orthogonal table and AVOF values,
we can obtain the response values of each parameter
which are listed in Tab. 3. According to the response val-
ues, we illustrate the trend of each factor level in Fig. 2.

According to the above analysis, a good choice of the

Tab.3 Response table

Level PopSize B b%
1 330.67 329.59 327.95
2 315.13 324.58 320.02
3 323.82 325.14 327.47
4 328.67 333.05 329.99
5 321.78 327.71 335.53

335
330
325
320
315
310

305 1 1 1 1 ]
30 40 50 60 70

PopSize
(a)

AVOF

335

330

AVOF

325

320 1 1 1 1 |
0.2 0.3 0.4 0.5 0.6

(b)

340
335
330
325
320
315

310 1 1 1 1 1
0.1 0.3 0.5 0.7 0.9

Y
(o)
Fig.2 Factor level trend of the parameters. (a) PopSize;
(b) Bi(c) y

AVOF

parameter combination is suggested as PopSize =40, B =
0.3, y=0.3.

According to Ref. [10], the parameters of the GA are:
PopSize = 80; the crossover probability P, is 0. 6; the
mutation probability P is 0. 001. According to Ref.
[17], the parameters of the PSO are: PopSize =80; ¢, =
2, ¢, =2.

3.2 Solution quality analysis

According to the available research, the performance of
heuristics can be examined by small, medium and large
size. Therefore, three operation sizes (8, 20, 50) were
used to test the algorithm. When the operation size is 8,
the average outcomes of 10 repeated experiments of the
PSO, GA and EDA are shown in Tab. 4 and Fig. 3, and
the iteration is set to be 150.

Tab.4 Performance comparison of small-scale surgery

Iterati

. CPU  Operating Recovery Optimal eral .10n

Algorithm . . . R . . . of optimal

time/s time/min time/min solution/min .

solution
GA 0.483 144.16 288.34 382.28 66
PSO 0.172 137.50 275.00 380.28 97
EDA 0.183 112.08 224.16 336.24 36
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From Tab. 4 and Fig. 3, all the algorithms can find op-
timal solutions with the same number of iterations. How-
ever, it is clear that EDA outperforms the GA and PSO
from the analysis of the makespan values and running
times.

420 -
410 -
400
390
380
370
360
350
340
330

320 1 1 1 1 1 1 1 1 1 1 I
1 15 30 45 60 75 90 105 120 135 150

Iteration/times

—— EDA; == GA ; = PSO

Makespan/ min

Fig.3 Small size makespan trends over time

When the operation size is 20, the average outcomes of
10 repeated experiments of the EDA, PSO and GA are
displayed in Tab.5 and Fig. 4, and the iteration is set to
be 200.

Tab.5 Medial size operation performance comparison

. . Iteration
. CPU  Operating Recovery Optimal .
Algorithm | . . . . . . of optimal
time/s time/min time/min solution/min .
solution
GA 2.56 1223.83 2447.66 3671.50 195
PSO 2.22  1205.15 2410.29 3615.44 97
EDA 2.47 1058.14 2116.27 3 174.41 191
4.2 -
4.0 F —+— EDA; =8~ GA; =+ PSO
g
‘g 3.8
§ 3.6
%‘ 3.4
G|
= 3.
3 0b00—r

1 20 40 60 80 100 120 140 160 180190200
Iteration/times

Fig.4 Medial size makespan trends over time

Tab. 5 shows that the three algorithms have almost the
same CPU time, while EDA has a smaller makespan
compared to the others. Fig. 4 shows that although the
EDA’s makespan is larger than GA’s and PSO’s at the
first iteration, as the iteration increases, EDA can find a
better solution.

When the operation size is 50, the experiments are re-
peated 10 times and the average outcomes are illustrated
in Tab. 6 and Fig.5. The iteration is set to be 300.

From Tab. 4 to Tab. 6 and Fig.2 to Fig. 5, regardless
of size, the EDA, GA and PSO can find the optimal solu-
tions in the limited iterations, and the CPU time is simi-
lar. As the iteration increases, the solution groups are

Tab.6 Large size operation performance comparison

Tterati
. CPU  Operating Recovery Optimal era .10n
Algorithm | . . R . . . of optimal
time/s time/min time/min solution/min .
solution
GA 4.912 17 934.28 35868.57 53 802.85 63
PSO 4.875 17 837.38 35674.76 53 512.15 213
EDA 4.787 16 009.33 32 018.66 48 028.00 201
6.2
6.0 L —+— EDA; =8 GA; =+ PSO
§5.8¢
5.6
E 5.4
g
o452
=
5.0 -
4'8 1 1 1 1 1 1 1 1 1 1 ]

1 30 60 90 120 150 180 210 240 270 300
Iteration/times

Fig.5 Large size makespan trends over time

changed. The EDA always finds better solutions than the
GA and PSO.

Tab. 7 illustrates that the makespans of EDA are better
than that of the GA and PSO, regardless the size of the
operations. The reason is that no genetic operators are
necessary for EDA as compared with the GA which uses
the operators like crossover and mutation for generations
of new solutions. Instead, EDA explicitly obtains statisti-
cal information from the previous research and constructs
a probability model of the best solutions, from which new
solutions are sampled. Then, the probability model is up-
dated in each generation with the elite individuals of the
new population. In such an iterative procedure, the new
population is built, and finally fitter solutions can be gen-
erated. Besides, the social cognition in the PSO is in-
complete. The standard formula of PSO enables the parti-
cles to learn only from the best of the peers by their social
cognition. Considering that the information can be exploi-
ted from the other non-global best peers, the social cogni-
tion in the PSO is incomplete. Then, the PSO may result
in a premature convergence.

Tab.7 Makespan value of different sizes
Size Small Medium Large
GA 382.28 3671.50 53 802.85
PSO 380.28 3615.44 53 512.15
EDA 336.24 3 174.41 48 028.00

3.3 Computation time analysis

Fig. 6 shows the CPU time of the EDA, GA and PSO
under different numbers of patients, which are 8, 20 and
50, respectively.

Fig. 6 indicates that all the three algorithms have almost
the same CPU time, and the CPU time of the EDA in-
creases with the increase of the number of patients. But it
is clear that the CPU time of the EDA is very short. The
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CPU time is only approximately 5 s when the number of
patients is 50. The proposed algorithm is suitable for car-
rying out an on-line scheduling optimization of the pa-
tients.

I —e— EDA; -8 GA; = PSO

CPU time/s

0 1 1
8 20 50

Number of patients

Fig.6 CPU time of the algorithms

3.4 Impact of size of operations

Tabs. 4, 5 and 6 indicate that the PSO is better than the
GA, thus i represents the average makespan of the

PSO. Similarly, i o Tepresents the average delay time of
the PSO.

The value of R, and R, varies with different numbers
of patients, and the results are shown in Fig. 7. As shown
in Fig. 7, both performance indices are positive. Average
makespans and average delay time increase by using the
proposed algorithm, which means that the proposed algo-
rithm performs well in applications.

0.50 -
0.45}
0.40
. 0.35}
Z 0.30 |
& 0.251
0.20
0.15 |
0.10 |
0.05 |

0 1 L
8 20 50
Number of patients

Fig.7 Relationship with R}, R;, and N

4 Conclusion

1) Compared with the GA and PSO, the proposed al-
gorithm can effectively solve the operating theater schedu-
ling problem by considering the availability of surgeons.
It can also reduce the operation time and recovery time ef-
fectively.

2) The feasibility and availability of EDA is verified in
Visual C + + language. Due to the short running time of
the proposed algorithm, an on-line scheduling problem of
patients can be carried out.

3) Compared with the GA and PSO, as the number of
patients increases, the advantages of the proposed algo-

rithm are revealed, but there is certain sensitivity to the
number of patients. An optimal scope may exist, which
can be further verified in practical applications.
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