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Abstract: In order to accurately identify speech emotion

information, the discriminant-cascading effect in
dimensionality reduction of speech emotion recognition is
investigated. Based on

and graph embedding framework,

the existing locality preserving
projections a novel
discriminant-cascading dimensionality reduction method is
proposed, which is named discriminant-cascading locality
preserving projections ( DCLPP). The proposed method
specifically utilizes supervised embedding graphs and it keeps
the original space for the inner products of samples to maintain
enough information for speech emotion recognition. Then, the
kernel DCLPP ( KDCLPP) is also proposed to extend the
mapping form. Validated by the experiments on the corpus of
EMO-DB and eNTERFACE’05, the proposed method can
clearly outperform the existing common dimensionality
reduction methods, such as principal component analysis
(PCA), (LDA),
preserving projections ( LPP), local discriminant embedding
(LDE), graph-based Fisher analysis (GbFA) and so on, with
different categories of classifiers.
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S peech emotion recognition ( SER) is a novel re-
search direction, which is an important branch of
affective computation. In the application of human-com-
puter interaction, speech information is processed by ma-
chines automatically using appropriate SER technology.
Some poor conditions also appeal for the use of SER due
to the compressive advantages of speech and acoustic sig-
nals. In addition, we can formulate speech emotion rec-
ognition as a generalized problem in which the original
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extracted features include many  improper” factors.
These factors may be useful for other recognition tasks,
e.g., speaker classification, automatic speech recogni-
tion etc., but they can affect the performance of the SER

some valid research has been pro-
[1-9]

system. Currently,
cessed with various subtopics
machine learning algorithms to explore suitable features
for speech emotion recognition. However, these methods
mostly rely on the experimental results (accuracy etc. ),
ignoring the inner structure of the training data with exist-
ing original speech emotion features. Based on the psy-
chological hypothesis and experiments, speech emotions
can be generally represented by the low-dimensional fea-
ture space'”’. For these purposes, we use dimensionality
reduction methods to solve speech emotion recognition.
Dimensionality reduction methods have been widely in-
vestigated recently. In the research of dimensionality re-
duction, the existing classical methods include principal
component analysis (PCA), linear discriminant analysis
(LDA), linear discriminant projections ( LDP) and so

on'"™' In these algorithms, graph learning or similar

. These works used basic

form-based methods have a large proportion. Some of
other subspace learning and component analysis methods
can also be represented by the graph learning framework
or the framework of regression.

In the research of speech emotion recognition, due to
the combination of speaker, language, speech recognition
and some other types of features in the original extracted
feature space, the importance of supervised information far
exceeds the other information, e. g. neighboring structure,
linear reconstruction etc. The unsupervised methods with-
out label information are usually of little help in raising
the performance of SER systems. Based on the analysis
above and our experimental results, we propose a simple
and valid method using discriminant-cascading graph con-
struction to make neighboring information useful in SER
again. The methods, namely discriminant-cascading lo-
cality preserving projections (DCLPP) and kernel DCLPP
(KDCLPP), focus on adopting the new space constructed
by discriminant-cascading neighbors. Compared with
some related existing algorithms" ™", the proposed meth-
ods possess the characteristics as follows. On the one
hand, our methods utilize supervised information from the

discriminant-cascading structure, compared with the ex-
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isting methods which directly combine discriminant and
local information together““ On the other hand, com-
pared with the supervised kernel methods'"”', our methods
adopt original features to avoid the loss of valid informa-
tion for recognition.

1 Methods
1.1 Preliminaries

We assume that X = {x,, x,, ..., x,} € R"*"is the nor-
malized training set, where the column i is the training
sample x,(i=1,2, ..., N) and N is the number of training
samples; n is the dimensionality of the original feature
space. x e R
the normalized testing samples. By the processing of di-
mensionality reduction, the dimensionality of the new

feature space turns to be m. Y ={y,, y,, ..., ¥y} € RV

mx1

nxl -«

is the column vector standing for any of

and y € R"" are consequently the eventual dimensional-
reduced training and testing samples of X and x, respec-
tively.

Then, we define the label feature vector of training
sample x,(i =1,2, ..., N) as a column vector I, e RY',
where N_ is the number of classes. The c-th element of /,
is equal to 1 when sample i belongs to class ¢, otherwise
it is equal to 0. In our research, each sample belongs to
only one class, so only one element of I, is equal to 1.
We further assume that the label set matrix Y = {/,
l,,...,1,}. For the other common variables, e e RV is
the column vector with all of its elements equal to 1 and I
is the identity matrix.

1.2 Graph embedding framework and LPP

Based on the existing research in subspace learning and
manifold learning, the graph embedding framework'' is
used to make some similar dimensionality reduction meth-
ods in a unified framework. This framework keeps nearly
the same forms of optimization and solution methods, but
it can provide different categories of data mapping, which
is sometimes adopted to connect training and testing data
sets. Compared with graph embedding framework, the
latest proposed least-square regression framework is more
generalized. In spite of this, the graph embedding frame-
work is still worth researching because this framework re-
veals the apparent relationships between each pair of train-
ing samples by constructing relatively appropriate embed-
ding graphs.

First, we show the original optimization form of graph
embedding framework as

arg min ) ||y, ~y, | *W, =arg miny'Ly (1)
yBy=d 0] yby=d
i#j
where d is a constant; B = L” when the penalty graph is
used and B = A when the scaling factor is used; A is the
diagonal matrix controlling the scale of the training data.

L=D-W and L®” =D” — W* are the the Laplacian matri-
ces of intrinsic graph and penalty graph, respectively; W
and W’ are the adjacency matrices of intrinsic and penalty
graphs. The diagonal matrices D and D" are the degree
matrices of the two graphs. y e R**' is the one-dimen-
sional sample set with the i-th row corresponding to train-
ing sample i.

For linear mapping, y € X'a, where a is the linear
mapping column vector. For kernelized mapping, y =
Ko, where K is the Gram matrix of training samples and
« is the kernelized mapping column vector.

LPP is a typical form of graph embedding. When LPP
is in the framework of graph embedding, the adjacency
matrix of intrinsic graph W =W_,,, where the element of
in WLPP is ( WLPP )ij

row i and column j

(x; —)cj)2 .. .
exp( - f) or (W), =1 when x, is in the neigh-

borhood of X; Or X; is in the neighborhood of x;, otherwise
(W) ; =0, where 7> 0 is the scaling parameter between
each two samples. We assume that (W,,,), =0 (i =1,
2,..., N). Suppose that D ,, is the degree matrix of
W, p, as is described for D and W. Then, the adjacency
matrix of penalty graph B =B, =B, ,,, as a scaling fac-
tor. The mapping for LPP is linear and for KLPP is with
a linear mapping matrix and a kernel mapping.

For LDA, the adjacency matrix of the intrinsic graph is

N,
- 1 c _C
Wipa =1 - 2}/76’8T (2)
c=1 ¢
where e € R"*' is a column vector with the elements
equal to 1 when the corresponding samples belong to class
c¢; n,is the number of training samples in class c¢. It can
be seen that Y' = {/,, [,, ..., [} = {el, e, ..., eN‘}T. The

penalty graph is B, =1 - %eeT.

1.3 Proposed discriminant-cascading LPP

The original speech emotion features originate generally
from acoustic quality and prosodic factors. Due to the ex-
istence of acoustic quality in the features, the features can
represent the characteristics of different speakers. The
features can also show the differences in various speech
contents due to the prosodic factors. Therefore, when ex-
amining the original extracted features of speech emo-

.19
tion™

, we can see that the features often include speaker
factors (including gender), speech information and other
categories of factors. These factors in the original speech
emotion features can bring mistaken information during
the procedure of unsupervised learning. This means that
neighboring construction or some other unsupervised
learning fails to achieve a satisfying performance with the
original speech emotion features.

Like the manifold structure of training samples in the
original feature space, there are also nonlinear structures



Speech emotion recognition via discriminant-cascading dimensionality reduction 153

in the new space generated by discriminant-cascading
ways. As can be seen in Fig. 1, the training samples in
the original feature space are shown in the left part, with
not ideal distribution of samples. By the process of dis-
criminant dimensionality reduction, training samples in
the new feature space often obey a more reasonable distri-
bution, but the samples may obey a nonlinear manifold
distribution for each class, as demonstrated in the right
part in Fig. 1. Although we can solve this problem by
kernel mapping, the choice of kernels is still an existing
problem for representing the structure of samples. In ad-
dition, kernelization may lead to loss of information since
it also changes the original space. Therefore, local struc-
ture learning is valid in this condition.

Original space New space
AClass 1 A Class 1
JAN
o ©8 OA O OClass 2 |::> S A,
5 0a 00 %250 a
AO O a Discriminant oA OO A
coa dismensionality o OO oY% 24
©)

© A 0 o reduction

Fig.1 Training samples in the original space (left part) and in
the new space generated by discriminant dimensionality reduc-
tion (right part)

Based on the analysis above, we propose a novel meth-
od, namely discriminant-cascading LPP ( DCLPP), using
supervised information to construct neighboring embed-
ding graphs. In this method, the newly generated space
by supervised learning can successfully provide better
compared with both
purely supervised learning and locality preserved learn-
ing. Meanwhile, the method can protect the original in-
formation of training data by a large margin.

First, we carry out dimensionality reduction by LDA.
With the help of training sample set X = {x, x,, ..., X, }
and its corresponding label information matrix L = {[,, [,,

.., 1y}, the LDA low-dimensional features for the train-

(LDA) (LDA) (LDA)
X = {x s Xy e,

local structure for classification,

ing set can be written as
xy"¥}. The dimensionality of X'*** can be set to be N,
—1 because of the number of minimal eigenvalues for the
generalized eigenvalue problem of LDA, which can be
In order to achieve better performance

when confusion of eigenvalues occurs, we use cross-vali-

easily proved.

dation to choose dimensionality of X" as N, -1 or N,
due to the influence from the trivial eigenvectors.

Using LPP and X"”", we formulate the optimization
problem as

min 2 (" -

ij=1

Y (W)

l/
N

st Y (DY) (n")?=d (3)
i=1

LDA LDA
where L2 = pUPA

o Y — WY and the element of row i

and column j for Wi is

[ (LDA) (LDA)]Z

(LDA) i j
(WLPP i = exp( - P !

) (4)

with i, j = 1,2, ..., N and i #j, when x|""" is in the
neighborhood of x(LDA) or x;"" is in the neighborhood of
X otherwise (W‘UL,EA) , = 0. The diagonal matrix

D;;>Y contains the i-th diagonal element: (D" ),

N

Y, (W) ;. Note that the optimal parameter ¢ >0
j=1
can be achieved by experience or cross-validation.

Then, we change the form of (3) to construct the new
optimization form. The form can be represented as

a" XL XTa

LPP

XDV XTa

LPP

arg Hmm s.t. a'a=1 (5)

The optimization of (3) and the cascading LDA can be
solved by the generalized eigenvalue problem ( GEP), to
achieve several optimal mapping directions.
method of GEP can be obtained according to the way in
Ref. [14].

It is notable that we do not use the low-dimensional fea-
tures generated by LDA to conduct a second-time dimen-
sionality reduction. The procedure of dimensionality re-
duction often brings a loss of information, though it can
show most of the effective information for classification.
In detail, the low-dimensional LDA features can only pro-
vide better presentation for each pair of training samples.

The solution

Using this presentation, we employ original features to ob-
tain the final results of the demensionality reduction.

Next, we propose the kernelized form of DCLPP,
namely KDCLPP. We assume that the Gram matrix of
the original speech emotion training samples is K =
@' (X)e(X), where o(X) = {e(x,), ¢(x,), ..., ¢(xy) }
is the high-dimensional RKHS (reproduced kernel hilbert
space) of training set,
RKHS of its corresponding training sample. In KDCLPP,
we adopt the KFD (kernel Fisher discriminant) method to
obtain low-dimensional discriminant training samples.
The optimization form of KDCLPP is

with each column representing

KFD
a' KLy, K'a T
arg | mmi s.t. aa=1 (6)
KD(KFD) K
LPP
(KFD) (KFD) (KFD) - . .
where L, =D, - W, is the Laplacian matrix of

KFD . KFD) -
WS® . The corresponding element of W is

[ (KFD) _ (KFD) ] 2
(Wi ), =eXP( —%) (7)
0
where if i/, x*"” is in the neighborhood of xj*"™ or
X is in the nelghborhood of x{"™; otherwise,

J

(KFD) _ (KFD)
(WLPP _O’ (DLPP

ij il

= 2 (Wi ; 18 the degree

diagonal matrix of W, . e is the projection vector for
KDCLPP.
We use the same Gram matrix K in solving KFD and
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KDCLPP to reduce computational costs. As when solving
linear situations, it is also necessary to conduct decompo-
sition to decrease the influence from small singular values
in solving GEP. The solution of GEP is based on the new
feature vectors generated by K.

The computational cost of our proposed DCLPP method
is equal to the cost combining LDA and LPP. However,
the computational complexity of DCLPP is similar to
conventional subspace learning methods, when the com-
mon solution for GEP is adopted. In the kernelized form,
the computational cost results from solving KFD plus
KLPP, subtracting a one-time decomposition of the Gram
matrix.

2 Experiments

2.1 Speech emotion corpora and original speech
emotion features

The speech emotion corpora adopted in the experiments
are EMO-DB ( Berlin speech emotion database)'® and
eNTERFACE’05"”. EMO-DB is a widely used corpus
including 10 German speakers and 10 different German
sentences, with 7 basic emotions, which are fear, dis-
gust, joy, boredom, neutral, sadness and anger. Howev-
er, some samples are not suitable for experiments in re-
flecting emotional states. Therefore, we select some sam-
ples (494) and delete the other ones in our research.
eNTERFACE’05 is a multimodal database containing both
video and speech sections. Its speech section includes 42
English speakers. 30 samples are recorded for each speak-
er, with 5 different sentences in 6 basic emotions ( anger,
disgust, fear, happy, sadness and surprise) .

In the experiments, we adopt the leave-one-subject-out
to process training and testing of data samples. Some of
the speakers of eNTERFACE’05 are selected from 42 in
total in our experiments, with relatively more differences
between each other.

We use feature selection to choose 370 original speech
emotion features including the statistics of pitch, format,
MFCC, zero-cross rate, energy and durance, e.g. rela-
tionships between voiced and unvoiced frames; as well as
the speech rate for each speech emotion sample by using
raw feature selection methods to delete a small number of
features which contribute little to emotion classification.
It should be clear that we have to keep most features to
sufficient that there is sufficient information for the learn-
ing process.

2.2 Setting of parameters

The original speech samples, including training and
testing samples, are enframed by the Hamming window
Then,
original speech emotion features are extracted based on

to achieve a desirable processing performance.

the description above. With the original speech emotion
features after feature selection, our proposed method is

adopted for obtaining valid features for speech emotion
recognition. Finally, classifiers including kNN and NB
are at the stage of classification. The number of neighbors
for kNN is fixed to be 1, which means that the classifier
is INN. We do not use the SVM classifier due to its high
computational costs and convergence properties in SMO
('sequential minimal optimization) .

All the generalized eigenvalue problems will be solved
according to the methods described in Ref. [ 14]. The
preserved dimensionality in the experiments is set to be
100 in order to evaluate the proposed method under an
equal condition. The numbers of neighboring samples in
our proposed method and the existing ones (LPP, LDE,
GbFA etc. ) are set to be the same.

In KDCLPP, we adopt the most commonly used
Gaussian kernel to achieve kernelization. The parameter
of Gaussian kernel mapping is chosen according to the
preserved dimensionality.

2.3 Experimental results and analysis

First, the relationship between reduced dimensionality
and recognition rates or UA (unweighted accuracy) is re-
presented in Fig. 2. We only show the recognition rates of
the linear form, DCLPP. The other methods used in
comparison here include: PCA, LDA, LDE, LDP and
GbFA. Figs.2(a) and (b) show the recognition rates for
the corpus of EMO-DB, using 1NN and NB classifiers re-
spectively. Similarly, Figs.2(c) and (d) reflect the rec-
ognition rates for eNTERFACE’0S5. Fig. 2 indicates that
our proposed method can achieve a better performance in
speech emotion recognition, compared with the existing
linear-mapping-based methods in the experiments. How-
ever, the recognition rates of the proposed method are not
always preferable. The system containing our methods
does not perform well in extremely low dimensionality.

In addition, it can be seen from Fig. 2 that the NB
classifier outperforms the 1NN classifier in both databas-
es, which means that the samples in the low-dimensional
feature space follow the fixed modeling of distributions
(single Gaussian distribution) relatively well. We can al-
so see that eNTERFACE’05 corpus is relatively difficult
to deal with in emotion recognition, though it includes fe-
wer categories of emotions than EMO-DB.

Tab. 1 shows the best recognition rates for each dimen-
sionality reduction method and its corresponding dimen-
sionality. With the recognition rates of baseline, the
emotions in EMO-DB are easier to recognize than the
emotions in eNTERFACE’05. Moreover, the NB classifi-
er seems more effective than the 1NN classifier in speech
emotion recognition. It is clear in Tab. 1 that unsuper-
vised dimensionality reduction methods, e.g. PCA and
LPP, can barely outperform the classification result of the
baseline in the speech emotion recognition experiments.
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Fig.2 Recognition rates of EMO-DB and eNTERFACE’05 in
low-dimensional conditions using different methods. (a) EMO-
DB with 1NN classifier; ( b) EMO-DB with NB classifier;
(c) eNTERFACE’05 with INN classifier; (d) eNTERFACE’05 with
NB classifier

In addition, some methods, e.g. LPP and LDE, inclu-
ding neighboring information often fail in the recognition
task. Some other ones, e.g. GbFA,
achieve relatively high recognition rates, but the perform-

can sometimes

ances are not stable enough. Although the proposed
DCLPP method is not always the best choice, the method
is still a desirable one based on the experiments.

Tab.1 Recognition rates using commonly used dimensionality
reduction methods and our proposed method with different clas-
sifiers in the corpora of EMO-DB and eNTERFACE’05 %

Corpora EMO-DB eNTERFACE’05
INN NB INN NB
Baseline 54.27 62.70 43.56 45.33
PCA 50.09(13)  60.91(14)  45.33(14) 42.44(14)
LDA 68.81(6) 71.05(10)  47.11(5) 50.22(7)
LDP 68.34(6) 68.86(6) 48.89(12) 50.89(13)
LPP 50.40(14)  60.31(13)  40.67(14) 42.22(10)
LDE 61.30(10)  65.38(6) 47.11(11) 46.89(6)
GbFA 69.14(6) 68.57(6) 47.78(6) 52.00(9)

DCLPP 69.73(7) 72.49(7) 49.33(8) 51.56(6)
KDCLPP 70.32(9) 72.77(10)  50.45(6) 53.11(6)

Note: The number in (

) is the dimensionality of the corresponding
recognition rate.

Furthermore, we investigate the kernelized form of the
proposed method KDCLPP which outperforms the linear
mapping form. However, the better performance is based
on the appropriate choices of the kernels. In other words,
we can select the kernels for the proposed KDCLPP in
manual or automatic ways. Cross-validation and incre-
mental optimization only using training samples are both
valid in selecting appropriate parameters of kernels here.

Then, we investigate the recognition performance of
different emotions using the proposed DCLPP method.
From Tab. 2, it can be seen that the emotions of sadness
and anger are easy to recognize due to the extracted fea-
tures in reflecting the characteristics of the two emotions.
In contrast, the emotion of joy/happy is difficult to rec-
ognize. It is not certain that whether the other emotions
have good or bad recognition performance based on the
classifiers and databases in our experiments.

Tab.2 Recognition rates for different emotions using classifiers
of 1NN and NB in the corpora of EMO-DB and eNTERFACE’05

%
Database EMO-DB eNTERFACE’05

INN NB INN NB

Fear 63.0 74.1 42.7 48.0

Disgust 62.2 70.3 45.3 50.7

Joy/Happy 50.8 55.4 49.3 53.3
Boredom 62.0 69.6
Neutral 75.6 76.9

Sadness 81.1 77.4 61.3 60.0

Anger 77.3 74.2 54.7 61.3

Surprise 42.7 36.0

The confusion matrices are shown in Tabs. 3 to 6,
when different databases and classifiers are adopted. The
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tables show the experimental results ( classification of the
testing samples) between every two emotions in the cor-
pora. According to the experimental results of EMO-DB
in Tab. 3 and Tab. 4, the emotions of joy and anger are
more likely to be confused than other emotion pairs. The
same conclusion holds when we use the corpus of
eNTERFACE’05. In addition, the emotion pairs of an-
ger-sadness, anger-surprise and happy/joy-sadness are
easy to recognize.

Tab. 3

using 1NN classifier in the experiments

Confusion matrix of speech emotions for EMO-DB

Emotion Fear Disgust Joy Boredom Neutral Sadness Anger
Fear 34 0 8 2 5 2 3
Disgust 0 23 4 6 3 0 1
Joy 6 1 33 0 3 0 22

Boredom 2 10 0 49 11 7 0
Neutral 1 1 2 11 59 3

Sadness 3 0 0 2 43 0
Anger 5 0 22 0 0 99

Tab.4  Confusion matrix of speech emotions for EMO-DB

using NB classifier in the experiments

Emotion Fear Disgust Joy Boredom Neutral Sadness Anger
Fear 40 0 6 1 2 2 3
Disgust 1 26 2 5 1 1 1
Joy 7 0 36 1 0 0 21
Boredom 8 3 0 55 3 10 0
Neutral 3 0 2 10 60 2 1
Sadness 5 0 0 7 0 41 0
Anger 7 2 23 1 0 0 95

Tab.5 Confusion matrix of speech emotions for eNTERFACE’05
using 1NN classifier in the experiments

Emotion Anger Disgust  Fear Happy Sadness  Surprise
Anger 41 7 4 13 2 8
Disgust 10 34 10 6 6 9
Fear 9 8 32 5 9 12
Happy 13 7 4 37 0 14
Sadness 4 6 9 1 46 9
Surprise 9 9 13 9 32

Tab.6 Confusion matrix of speech emotions for eNTERFACE’05
using NB classifier in the experiments

Emotion Anger Disgust  Fear Happy Sadness  Surprise
Anger 46 3 6 10 5 5
Disgust 8 38 8 5 6 10
Fear 7 9 36 7 9 7
Happy 16 3 5 40 0 11
Sadness 3 7 11 1 45 8
Surprise 4 10 9 12 13 27

3 Conclusion

We investigate the dimensionality reduction methods

and propose a novel method to solve the neighboring-
based dimensionality reduction. This method is reasona-
ble when the originally extracted features are not suffi-

ciently effective for reflecting the given recognition task.

Speech emotion recognition is a typical application, in
which the original features cannot effectively provide indi-
cations for recognition. In the proposed method, discrim-
inant-cascading thought is combined in the framework of
graph embedding and LPP. Validated by experiments on
the corpora, our proposed DCLPP and KDCLPP outper-
form the existing dimensionality reduction and subspace
learning methods in most conditions. However, the dis-
criminant-cascading structure does not exactly follow the
correct structure of training samples. Therefore, more ap-
discriminant-cascading ~ ways worth
researching in the future.

propriate are
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