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Abstract: In order to effectively conduct emotion recognition
from spontaneous, non-prototypical and unsegmented speech
so as to create a more natural human-machine interaction; a
novel speech emotion recognition algorithm based on the
combination of the emotional data field (EDF) and the ant
search ( ACS) strategy, called the EDF-ACS
algorithm, 1is proposed. More specifically, the
relationship among the turn-based acoustic feature vectors of

colony
inter-

different labels are established by using the potential function
in the EDF. To perform the spontaneous speech emotion
recognition, the artificial colony is used to mimic the turn-
Then, the canonical ACS
strategy is used to investigate the movement direction of each
artificial ant in the EDF, which is regarded as the emotional

based acoustic feature vectors.

label of the corresponding turn-based acoustic feature vector.
The proposed EDF-ACS algorithm is evaluated on the
continueous audio/visual emotion challenge ( AVEC) 2012
dataset, which contains the spontaneous, non-prototypical and
unsegmented speech emotion data. The experimental results
show that the proposed EDF-ACS algorithm outperforms the
existing state-of-the-art algorithm in turn-based speech emotion
recognition.
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I t is important to consider human behavior informatics

. . . 1-2
and behavioral signal processing'' ™'

when attempting
to create an intelligent and natural human-machine inter-
action. As an important part of the quantitative analysis
of human behavior, emotion recognition plays an impor-
tant role in many applications, such as virtual agents,
mobile phones, and in-car interfaces, in appropriately re-

sponding and reacting to the emotional state of the inter-
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. 34 . . . .
acting users” ™. This results in social competence and in-

creased acceptance among potential users.

Even though current works'>™® report remarkable emo-
tion recognition accuracy, when attempting to assign an
emotional label to an emotionally colored speech turn,
most works are not suitable for automatic speech emotion
recognition in a real-life setting. One of reasons is that
automatic emotion recognition ( AER) algorithms are
mostly evaluated on acted and prototypical data such as
German “Berlin” or Danish emotional speech, which is
relatively easy to assign to a set of predefined emotional
labels and causes the recognition performance to overesti-
71 " The other reason is that AER methods fail to
effectively deal with unsegmented and spontaneous
speech, which even requires an immediate response to the
finished

mate

emotional state of a user before he/she has
speaking'” .

It is an interesting and challenging problem how to au-
tomatically recognize the user’s emotional state from
spontaneous, non-prototypical and unsegmented speech,
since the speaker’s emotion always affects the temporal
dynamics of spectral, prosodic, and voice quality
acoustic features'” """, For accurately recognizing speech
emotion turn by turn, the temporal context of the preced-
ing speech turns has to be considered when modeling
emotional history. The static classifiers like SVM'”' and
KNN'"* do not model the temporal dynamics context but
capture this contextual information only by temporal-relat-
ed features such as duration or statistical functionals over
features. Though the dynamic classification methods such
as hidden Markov models "' and hidden conditional ran-
dom fields!”’ are the ones to reduce this limitation, these
classifiers have no possibility to model the temporal dy-
namics context by a flexible self-learned manner'”. Re-
cently, a dynamic classifier called the long-term short
memory ( LSTM) recurrent neutral network is used to
model the temporal dynamics context. Wollmer et al. ™
used the LSTM to model the temporal dynamics context
of real-life turn-based speech emotion. This method
achieves state-of-the-art quality for turn-based speech e-
motion recognition. However, LSTM has drawbacks for
modeling the context information by strictly sequential
propagation''®
tion variation. This information may be influenced by the

, and ignores the prior information of emo-
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speaker’s personality and cultural background, and can be
captured by the labeled training data.

To address the above issues, in this paper we present a
novel turn-based speech emotion recognition algorithm,
which can not only model the temporal context but also
learn the emotion varied prior information for each turn.
The proposed speech emotion algorithm is developed by
the following two steps. First, we develop the EDF by u-
sing the canonical data field (DF). Using its potential
function, we can quantitatively investigate the emotional
label relationship among acoustic feature vectors of differ-
ent turns. Secondly, an artificial ant colony is used to
mimic the acoustic feature vectors of turns, and the ant
colony search ( ACS) strategy is used to investigate the
movement and transformation of each artificial ant in
the EDF.

To evaluate the proposed emotion recognition algo-
rithm, all simulation experiments are performed on the
SEMAINE ( machine-human interaction using nonverbal
expression) corpus. This corpus contains the spontane-
ous, non-prototypical and unsegmented speech by users’
spontaneous and emotionally colored conversations under
the virtual agent scenario.

1 Emotional Database and Acoustic

Feature Extraction

The AVEC 2012 challenge dataset is a subset of the
SEMAINE corpus”” , which is continuously annotated in
a two-dimensional space spanned by valence and activa-
tion. Each recording in this challenge dataset is collected
by the Wizard-of-Oz SAL interface, which allows users
to speak to four different virtual characters. Each of them
represents one of four emotional quadrants: “Prudence”
represents relaxed/serene (quadrant [ ); “Poppy” repre-
sents happy/excited (quadrant [ ); “Obadiah” represents
sad/bored (quadrant Il ); and “Spike” represents angry/
anxious (quadrant [V). Although the quadrant annotation
of emotion space can reflect emotional
change, a categorical decision has to be made for human-
izing the output of the AER algorithm. Following the pre-
vious work™, we consider the five-class emotion task:
happy/excited, sad/bored, angry/anx-

Neutral is also considered in this work

continuous

relaxed/ serene,
ious and neutral.
since it is dominant in real-world emotional categories and
can avoid the ambiguous emotional categorical annotation
for a given speech turn'”’. The recordings in the AVEC
2012 challenge dataset were split into three parts: train-
ing, development and test set, respectively.

As each recording in this data set contains long contin-
uous time, a segmentation of the recording has to be per-
formed. Pauses of more than 200 ms are used to segment a
recording into turns based on the voice activity detection.
Therefore, we can perform turn-based speech emotion rec-
ognition in this work. For each recording, the annotations

for arousal and valence are quasi-time-continuous labels
using the FEELtrace system'". As ground truth of each
turn, the mean annotation of each turn is calculated and is
mapped to the five-class emotion using the two-dimension-
al space spanned by the valence and activation.

In this work, we perform turn-based speech emotion
recognition using the 2 268-dimensional acoustic baseline
feature set, which are 32 energy and spectral-related low-
level descriptors x 42 functionals, 6 voice related LLD X
32 functionals, 32 delta coefficients of the energy/spec-
tral LLD x 19 functionals, 6 delta coefficients of the
voice related LLD x 19 functionals,
voiced durational features. Due to space limitation, de-
tails for the LLLD and functionals are given in Ref. [17].
The functionals are computed over turn detected by voice
activity detection. To avoid redundancy among the 2 268-
dimensional feature set,

and 10 voiced/un-

we perform feature selection
using the correlation-based feature selection with the line-
ar forward search'”. This results in the selection of 55-
dimensional feature vector for the five-class emotion rec-

ognition task.
2 Algorithm

In this section, we present a novel turn-based speech
emotion recognition algorithm, called ACS based on the
EDF ( EDF-ACS). The proposed EDF-ACS algorithm
aims at recognizing the spontaneous, non-prototypical and
unsegmented speech emotion by simultaneously modeling
turn-based emotional history and the prior emotion vari-
ance information for each turn. The following subsections
2.1 and 2. 2 describe the two steps required to build the
EDF-ACS algorithm.

2.1 EDF

Gan et al. ™' proposed an effective algorithm called da-
ta field (ED) to describe the inter-relationship (e. g., in-
teraction, transformation and movement) among different
data similar to the source field of physics, and each piece
of data in ED is not independent and can be associated
with other data by the potential function of ED. Using
this potential function, data can move along the path and
direction of the largest potential function imposed by oth-
er data. This ED has been proved a powerful algorithm
for data mining, such as data clustering and probabilistic
density’s estimation'*"!.

Let {x,})_, be a data set and N is the number of data.

N

The potential function between data x;, and {x;};_, ., is
defined as

N

Y, exp(—dis(x,,x)) (1)

Jj=1j#i

F(x,, {xj };V=1,j¢i) =

where dis( + , - ) is the distance measure between differ-
ent data. Without using the common Euclidean distance,
this distance cannot catch any statistical regularities in the
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data estimated from the training set with the labeled data.
According to Ref. [21], we compute the potential func-
tion using the Mahanalobis distance for the kNN classifi-
er. Using the Mahanalobis distance, Eq. (1) can be re-
written as

N

3 expl - (x, - x) M(x, - x,) |
o (2)

where the linear transform matrix M is semi-definite, and

F(x, ix;i, ) =

j=1.#i

can be solved by a defined semi-definite program prob-
" The distance is trained to aim at the objective
that the k-nearest neighbors belonging to the same class
are always separated from the data of other classes by a
larger margin. Therefore, the unlabeled data tends to
have the largest potential value produced by the k-nearest

lem

neighbors from the same class data, other than the smal-
lest from different classes. Correspondingly, the recogni-
tion rule for the DF is formulated as

If arginax{vp(xi) = Y F(x,x)} p=12,-P

x€8,(x,)

then x, e the p-th class

where V (x,) is x,’s potential value produced by the data
set §,(x,); 6,(x,) is the k-nearest neighbors of x, from
the p-th class train set; p=1,2,---, P and P is the num-
ber of class. As shown in the rule, this unlabelled data x;
is assigned to the label when its correspondingly k-nearest
neighbors of the p-th class training set produce the largest
potential value for the data x,. Similar to the kNN recog-
nizer, the DF also uses the nearest neighbors of an unla-
belled data to recognize its label. The kNN recognizer
recognizes an unlabelled data by the major label of the k-
nearest neighbors in the training set. Different from the
kNN, the DF exploits the comparison of potential values,
which is respectively produced by the k-nearest neighbors
from the training set of different classes. According to the
recognition rule, the DF can quantitatively measure the
label’s attribute to an unlabelled data by the value of the
potential function. Using DF for speech emotion recogni-
tion, each data in DF is represented with the reduced
acoustic feature vector using the CFS-based feature selec-
tion'"’. Then, this DF is referred to as EDF, and each
acoustic feature vector in this EDF has its own emotion
label. However, the EDF cannot effectively model the
emotion varied history. To address the issue, we develop
the EDF-ACS algorithm in the following subsection fur-
ther.

2.2 ACS based on EDF

ACS'™' is a metaheuristic algorithm used to find an op-
timal path in a graph with respect to its predefined func-
tions. The artificial ants defined by the ACS move along
the path of the graph by mimicking the forging behavior

of its biological counterparts. Finding the optimal path for
ants is a stochastic procedure based on two elements,
namely heuristic value and pheromone. The heuristic val-
ue is the prior knowledge of edge selection for a single
ant, without communicating with the other ants. A pher-
omone is the weight of edge and a way that ants commu-
nicate with other ants. The more pheromones on the one
edge, the greater the possibility that the ant selects the
edge. The key idea of the ACS-type algorithm contains
two interwoven rules. Each ant selects the edge of the
graph by considering the amount of pheromone corre-
sponding to this edge. On the other hand, ants constantly
move along the graph and an outer observer appreciates
the path of each ant according to a certain quality func-
tion. The rules allow ACS to dynamically investigate the
interaction, transformation and movement of acoustic fea-
ture vectors in EDF. Thus, this results in that the turn-
based emotional history and the emotion varied prior in-
formation may be simultaneously investigated by the pro-
posed EDF-ACS algorithm.

The necessary precondition of applying the ACS to any
problem is to reformulate the edges and nodes of graph
and give reasonable quality functions. It is easy to assume
that each node corresponds to one of the emotional cate-
gories, and the edge links the possible emotion change
mode. Fig. 1 plots the graph of the five-class emotion
changing modes. Subsequently, we define the heuristic
value and pheromone of this graph. The heuristic value
reflects the prior information of emotional change, which
can be calculated by the potential value produced by the
labeled training data, since this potential value gives an
indication of the likely emotion label and location infor-
mation in the EDF for the corresponding acoustic feature
vector. More specifically, let x (n) be the acoustic fea-
ture vector of the n-th speech turn, and the emotional la-
bel of the (n —1)-th speech turn is the c-th class. Then,
the potential value 7, (¢,d) of x(n) produced by the
d-th class training set can be written as

ﬂx<,,)(0,d) = V,,(x(n)) =

Y, F(x(n),x) (3)

x;e8,(x(n))

Happy/

cited

Angry/

Anxious

Fig.1 The five-class emotion changing graph
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where the potential value 7, (c,d) represents the heu-
ristic value of x(n) changing from the c-th class emotion
to the d-th class. §,(x(n)) is the k-nearest neighbor of
x(n) from the d-th class training set.

For the specific n-th speech turn, the pheromone repre-
sents the information of the emotional history, which is
influenced by the acoustic feature vectors {x(1),x(2),
-, x(n—1) | of the precedent turns. Similar to 7, (c,
d), Ne(1) x2).xn-1y (C,d) is defined as the pheromone
of the edge from the c-th class emotion to the d-th class,
which is produced by the set of acoustic feature vectors{x
(1),x(2),-,x(n-1)}. Suppose that x(n —1) be-
longs to the c-th class emotion, and that there is a likely
emotional label change for x (n). Using the canonical
ACS strategy, the probability that x (n) selects the edge
from the c-th class emotion to the d-th class can be de-
fined as

px(n) (C’d) =
[n,xw)_ (c,d) 1[40 @) coowtany (€5d) 17
2 ["Imm (c,u) ]a[n:x(l),x(Z),m,x(n—l)} (c,u) ]B

ues,, (c)
(4)

where

M ix(1) x(2),x(n-1)} (c,d) =(1 _p)n}x(]),x(Z),m,x(/fo)# (c,d) +
77x<n71)(0,d)
(5)

where S, (¢) is the allowing emotion set of x(n) chan-
ging from the c-th class emotion; « is the parameter that
determines the relative importance of the heuristic value
and 3 determines the relative importance of pheromone; p
(0<p<1) is the pheromone evaporating parameter, by
which we can learn the previous temporal context infor-
mation with the exponential decay manner. Based on the
above analysis, the proposed EDF-ACS algorithm is de-
scribed in Fig. 2.

Fig.2 shows that using Eq. (4), there are two cases
for recognizing the unsegmented and turn-based speech
emotion. One case is that there is likely emotional change
for the acoustic feature vector x(n). Although we cannot
accurately estimate the necessary condition of emotion
change, min p (c,d) (y e the c-th class training set) re-
sults in that Eq. (4) cannot ignore any likely emotion
change. Therefore, we use Eq. (4) with 8#0 to calcu-
late the emotional change probability for the acoustic fea-
ture vector x(n), which considers the emotion informa-
tion history of precedent turns. Conversely, Eq. (4) uses
B =0 to calculate the emotional change probability for
x(n), which is reduced to the probability representation
of the recognition rule.

3 Experiments

The parameters k, «, B and p described in the previous

Input:
acoustic feature vector

x(n)

Pun (¢,d) >min py(c,d)
with 8=0 and y e the c-th

class training set

Yes +

Using Eq. (4) with
B#0 to compute

i No
Using Eq. (4) with
B=0 to compute

the emotional change the emotional change
probability for x(n) probability for x(n)

Output: the emotional
label of the maximum
probability is assigned
to x(n)

Fig.2 Flowchart of the proposed EDF-ACS algorithm

section affect the performance of the proposed EDF-ACS
algorithm. In Tab. 1, we set a range for each of the four
parameters and uniformly partition these ranges into
eight, eleven, eleven and nine discrete values for parame-
ters k(k=8,9,---,14,15), a(0<sa<2), B(0<sB=<2)
and p(0 <p <1), respectively.

The value ranges of parameters a, 3 and p are set to be
the same as the canonical ACS algorithm. The start trial
of k is 8, since the linear transform matrix M in Eq. (2)
is solved only using three target neighbors and a 50/50
cross validation strategy over the training set. When k is
increased, the performance of EDF-ACS appears to con-
verge rapidly and the higher k can result in over-smoot-
hing of the recognition boundary. Therefore, the final tri-
al for k is set to be 15. This results in 8 712 different pa-
rameter combinations. For different £, we greedily search
the combination of the parameters p, « and B to make the
EDF-ACS algorithm achieve the highest average recogni-
tion accuracy using the development set. The experimen-
tal results are shown in Tab. 1.

Tab.1 Average recognition accuracy over the development set

Fixed Adjusted parameters by  Average recognition
parameter k greedy search accuracy/ %

8 p=0.4, a=1,8=1.2 37.88

9 p=0.4,a=1,B=1.2 37.96

10 p=0.5,a=0.8,8=1.4 39.42

11 p=0.5, «=0.8,8=1.4 40. 14

12 p=0.5,a=0.8,8=1.4 41.23

13 p=0.6, a=0.6,B=1.6 40. 61

14 p=0.6,a=0.6,8=1.6 39.74

15 p=0.6, a=0.6,B8=1.6 38.27

As shown in Tab. 1, for smaller k(k =8,9), more
context information is exploited in recognition task by
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using the smaller p and larger «. On the contrary, for lar-
ger k(k=13,14 and 15), less context information is ex-
ploited in the recognition task by using the larger p and
smaller o. This may be because the larger k can effective-
ly describe the distribution and location information of
acoustic feature vectors in the emotional data field. Then
we evaluate the proposed EDF-ACS for the test set with k
=12, «=0.8 and 8 =1.4, which can achieve the high-
est average accuracy for the development set. To fairly
evaluate the proposed EDF-ACS, we compare the pro-
posed algorithm with ED and the common algorithms of
turn-based speech emotion recognition. The common al-
gorithms are KNN, SVM and discriminatively trained
LSTM. In particular, the discriminatively trained LSTM
achieves state-of-the-art quality for turn-based speech
emotion recognition’’. The input layer size of LSTM is
set to be 55, which is the same as the dimension of the
reduced acoustic feature vector. In addition, LSTM con-
tains a recurrent hidden layer with 50 memory blocks for
each LSTM cell. The output layer size of LSTM is equal
to the number of emotional categories. SVM uses the
Gaussian kernel function. The kernel bandwidth and regu-
larization parameter is also tuned by the development set.

Tab. 2 shows the recognition results of the above algo-
rithms for the AVEC 2012 dataset. LSTM outperforms
the SVM, kNN and ED, which indicates that the dynam-
ic context information is useful in the turn-based speech
emotion recognition task. In particular, when using the
same number of neighbors, ED achieves better recogni-
tion accuracy than kKNN. This shows that the Mahanalobis
distance can better detect the distribution characteristic of
speech emotion data than the Euclidean distance. Further-
more, the best average accuracy for EDF-ACS is
35.01% , which indicates that the turn-based speech emo-
tion recognition also should consider the emotional varied
prior information.

Tab.2 Average recognition accuracy on AVEC 2012 dataset

Algorithms Accuracy/ %
kNN (k=12) 31.62
SVM 30. 48
LSTM 33.65
ED (k=12) 32.24
Proposed EDF-ACS 35.01

4 Conclusion

In this paper, we propose a novel speech emotion rec-
ognition algorithm based on the combination of the emo-
tional data field (EDF) and the ant colony search ( ACS)
strategy. Compared to the existing and the state-of-the-art
algorithms, the proposed EDF-ACS algorithm can effec-
tively recognize emotion from spontaneous, non-proto-
typical and unsegmented speech. In this algorithm, the
EDF models the varying information of speech emotion

by using its potential function to investigate the inter-rela-
tionship among the turn-based acoustic feature vectors,
and the canonical ACS strategy investigates the movement
direction of each artificial ant in the EDF to model the
speech emotion history and prior emotion information for
each speech turn.
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