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Abstract: To improve the reconstruction performance of the
greedy algorithm for sparse signals,
called
matching pursuit, is proposed. Compared with state-of-the-art

an improved greedy

algorithm, sparsity estimation variable step-size
greedy algorithms, the proposed algorithm incorporates the
restricted isometry property and variable step-size, which is
utilized for sparsity estimation and reduces the reconstruction
time, respectively. Based on the sparsity estimation, the

initial value including sparsity level and support set is

computed at the beginning of the reconstruction, which
provides preliminary sparsity information for signal
reconstruction. Then, the residual and correlation are

calculated according to the initial value and the support set is
refined at the next iteration associated with variable step-size
and backtracking. Finally, the correct support set is obtained
when the halting condition is reached and the original signal is
reconstructed accurately. The simulation results demonstrate
that the proposed algorithm improves the recovery performance
and considerably outperforms the existing algorithm in terms
of the running time in sparse signal reconstruction.
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Compressed sensing (CS)""™, which can be used to
sample analog signals at far lower rate than the
Nyquist sampling rate, has aroused tremendous interests
over the past few years. CS is simply divided into three
procedures: sparse representation,
measurement and signal reconstruction. The reconstruc-
tion algorithm aims to obtain the original sparse signal
from measurements and is one of most important compo-

non-related linear

nents in CS.

Various efforts have been made for sparse signal recon-
struction with reliable accuracy and robustness to noise.
/,-minimization and greedy pursuit algorithms are two
major approaches among the existing recovery algo-
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rithms. [/ -minimization algorithms, such as basis pursuit
(BP)"!" and its optimization algorithm—gradient projec-
1 solve a convex minimization problem. The con-
vex relaxation algorithms need the minimal number of
measurements but have the drawback of high computa-
tional complexity. Greedy pursuit algorithms, which are
based on the idea of iteration, identify the supports set of
the target signal and construct an approximate signal
based on the set of the chosen supports, until a halting
condition is met. Orthogonal matching pursuit (OMP) "
is the typical greedy algorithm and its computation com-
plexity is significantly lower than those of /,-minimization

tion

algorithms. Regularized OMP'" and stagewise OMP'”' are
the classical improved greedy algorithms of OMP, which
additionally refine the selected column atoms of measure-
ment matrix. Subspace pursuit ( SP)'® and compressive
sampling matching pursuit (CoSaMP) ", which also re-
fine the columns selected from each iteration,
posed by the idea of backtracking. The reconstruction
performance is improved by further selecting the projec-
tion coefficients in subspace spanned by previous col-
umns. SP and CoSaMP require the sparsity K as a priority
which may not be available in practical applications. In

are pro-

order to overcome this drawback, the sparsity adaptive
matching pursuit ( SAMP)"" algorithm is proposed,
which can reconstruct the signals by dividing the recovery
process into several stages with fixed step size without
knowing the sparsity. Another sparsity adaptive approach
based on the matching test'"
estimated value for iteration. Furthermore, a sparsity a-
daptive algorithm'"' utilizing restricted isometry property
(RIP) and distributed compressed sensing was proposed
to apply to wideband compressive spectrum sensing.
However, the fixed step size leads to a long reconstruc-
tion time or inaccurate recovery. Moreover, both the VS-
SAMP'"?" and MSAMP'* can reduce the reconstruction
time for speech signals by changing the step size. RIP
was studied in detail in Ref. [15] and introduced into the
application of compressed sensing.

In this paper, we propose a new greedy algorithm
called sparsity estimation variable step-size matching pur-
suit (SEVSMP). The proposed algorithm estimates the
sparsity of the target signal by utilizing RIP. Then, the
estimated sparsity level and the support set are leveraged
as the initial value of the iteration, which provides pre-

is used to obtain an initial
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liminary sparsity information for signal reconstruction. In
addition, the variable step size is chosen according to the
residual in the proposed algorithm SEVSMP, which is
more flexible compared with the fixed step size in the
SAMP algorithm. The simulation results demonstrate that
the proposed algorithm can reduce reconstruction time
dramatically and recover signals effectively.

1 Compressed Sensing

Suppose that signal x is an N-length vector and ¥ =
{¢,, ¢,, ..., @) is the sparse basis where ¢, is an N-
length column vector (i =1, 2, ..., N). The signal x can
be denoted as K-sparse signal on the basis W if x satisfies
the following equation:

N

x = Za,.qo,» = Yu (1)
i=1
lel,=K (2)

x1

where @ € R"*' is a sparse vector and K<N. |-, de-
notes the number of nonzero elements. Then, the signal x
is equivalently represented by vector e under some linear
transform ¥ in some domains. Based on compressed
sensing, the signal x can be reconstructed by measure-
ment as follows:

y=ox (3)

Mx1 MxN

where y e R"* is the measurement vector and @ e R
is the measurement matrix where M < N. According to
Eq. (3), we collect the M-dimensional non-adaptive line-
ar measurement signal y, which contains the whole infor-
mation of the N-dimensional signal x.

Substituting Eq. (1) into Eq. (3), we can obtain

y=0Wu=A_ (4)

where Ay = @W.

The reconstruction problem of signal x is transformed
into recovering @ from measurements y. As long as a is
obtained, we can use Eq. (1) to obtain the original signal
x. A sufficient condition for exact recovery is that matrix
A satisfies the RIP condition'" .

Definition 1 Matrix A e R"*" is said to satisfy the
RIP condition with the smallest number of K-restricted
isometry constant §,, if

(1=8) V"< A | <1480 [[v[I* (5)

holds for any K-sparse vector v e R with || v || ,<K.

Now we need to reconstruct the unknown signal x from
the measurement y. A natural formulation of the recovery
problem is within an /, norm minimization framework,

which seeks a solution to the problem:
min | e || , s.t. y=Aa (6)

Unfortunately, the above problem is NP-hard. One
way to avoid using this computationally intractable formu-

lation is to consider an /,-minimization problem:

min ||, st y=Aia (7)

For the above two problems, as previously mentioned,
there are various kinds of reconstruction methods to solve
them. The proposed algorithm will be depicted elaborate-
ly in the next section.

2 SEVSMP Algorithm

The SEVSMP algorithm is described in this section.
The SAMP adopts a stagewise approach to search the real
support set stage by stage. The stage is determined by the
residual between the measurement signal and the projec-
tion on the space spanned by the support set. The itera-
tion process of OMP and ROMP is determined by the
sparsity. The process of SAMP, however, is determined
by the step size due to the unknown of the sparsity. The
running time of the reconstruction will be too long if the
step size is too small, while the error support will appear
if the step size is too large. The step size plays a signifi-
cant role in terms of the running time and performance in
reconstruction. Consequently, it is important to choose an
appropriate step size.

2.1 Sparsity estimation

The algorithm SAMP needs an initialization of the fi-
nalist size in the first stage. On the one hand, the recov-
ery may be inaccurate if the finalist size is large. On the
other hand, if the finalist size starts from 1, the recon-
struction time will be extremely long. The most high-
lighted modification in the proposed algorithm is the spar-
sity estimation. The main idea is to conduct a matching
test to obtain a support set whose cardinality K| is less
than real sparsity K. If K, > K, the following iteration
cannot operate. The real support of signal x is represented
by I and supp( ") =K. Also, @, represents the subma-
trix formed by the columns of @, whose indices are in set
I'. Moreover, for g = @'y, where g, stands for the i-th
element of g. Then the set I consists of indices corre-
sponding to the K|, largest absolute value of g, and supp
(I"°) = K,. Finally, the proposition is followed as be-
low.

Proposition 1  Suppose that @ satisfies the restricted
isometry property with parameters K and §,. If K, =K,
then we can obtain the formula:

=6
1 +6,

Proof Select K maximum indices from | 8 | (1<i
<N), and then we can obtain a set represented by I
When K, =K, I'CI”. Then we obtain

| ®ry | ,= Iyl (8)

I Dry .= Py |l (9

Furthermore, we have
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| ®py |, = max [(®,y)" =
o ieA

” cb-/r‘y ” 2 = ” QD-[F,(D[x ” 2 (10)

Denote A (@ @,.) as the eigenvalue of matrix @,.d,..
According to the definition of RIP, we have 1 - §, <
M@, ®,.) <1 +5,. Therefore, we can obtain the fol-
lowing expression ;

| x| ,=(1-5,) | x|, (11)

On the other hand, utilizing the property of RIP,
we have

(12)

Combining inequality (10), (11) and (12), the fol-
lowing formula can be obtained :

-5
.

1
1+,

I @y | .= (13)
Proof is completed.
Considering the converse-negative proposition of Prop-
osition 1, we have

~ 5y

1 +8g

Iy |, < Iyl (14)
Then K, < K.

According to Proposition 1, if we obtain a set I satis-
fying inequality (14), then the sparsity estimation K, can
be obtained. The concrete step of sparsity estimation is as
follows :

Let K, =1, if (14) is true, then K, = K, + 1 ; until in-
equality (14) is not satisfied.

At the same time, ] is the estimation of true support
set I.

2.2 Algorithm description

From the above description of sparsity estimation, the
initial sparsity and the support set can be obtained. Fig. 1
shows the conceptual diagram of SEVSMP. In this dia-
gram, C, denotes the candidate set and F, corresponds to
the finalist set. Both of them are adaptive. That is to
say, sets C, and F, change with the iterations so that the
algorithm can refine atoms and choose the final support.

The variable step size is incorporated according to cer-

Fkl

Input :
P 7 Sparisty . Candidate
S Correlation
estimation C,

Variable
step size

Final test Update F,

ting

No

Fig.1 Conceptual diagram of the SEVSMP

tain criteria. The step size declines when the residual be-
comes small. This modification can reduce the running
time effectively and the recovery process is divided into
several stages, each of which contains several iterations.
The concrete steps are shown in the pseudo code. Func-
tion max ( ) returns indices corresponding to the largest
magnitude value in parentheses. This algorithm halts
when the norm of residual || r || , is smaller than a certain
threshold ¢ in this paper. Parameter 7 is added to the al-
gorithm, whose value is determined by a large number of
empirical experiments, and it is used to control the step
size of each iteration.

Algorithm 1 SEVSMP

Input: @, y, ¢, and 7.

Output: A K-sparse approximation of the original sig-
nal.

Initialization: K, =1; 8, =0.26; ' =&; F, =J;

Sparsity estimation ;

repeat

g =dy;
I’ = { K, indices corresponding to the largest
magnitude value in g°1 ;

1-8,

1+,

if || @y, < Iyl

K, =K, +1;
end
1 - K
1 +6,
esti = mil’l ” y - di[‘"xl'" ” i;
Subspace backtracking :
QZKO; k=1; r,=r

until || @y ||, < |y ,is violated.

calculate r

esti 9

repeat
S,=max( |®@'r,_, | ,0);
C=F,_,US,;
F=max( | @y |,0);
r=y-o.dy;
if [rf,=(r. 1.
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if [ri,>n- [yl
s=[Ky/21;
else
S:FK0/4—|;
end
Q=Q+S;
else
FkZF; rk:r;k:k+1;
end
until halting condition: ||r|,<e

2.3 Complexity analysis

As a matter of fact, SEVSMP has two main proce-
dures. One is sparsity estimation and the other is subspace
backtracking iteration. At the stage of the sparsity estima-
tion, the corresponding complexity is (2M -1)N, N -
1, (K,-1)MK, +K,(K, -3)/2 and K, + (2M + 1)K,
+2(M -1)K,. Next, Algorithm 1 moves into the stage
of subspace tracking and the complexity of the k-th itera-
tion is approximately (2M -1)N + NK, - (K, + 1) K,/2
+4MK;k + 2MK k. In total, the whole cost of Algorithm
1 is O (MN). More importantly, the iterations of
SEVSMP is fewer than those of SAMP. The reason is
that at the beginning of the algorithm, a larger step size is
used to approach the real sparsity. With the decrease of
the residual, the step size declines according to the extent
of the residual. The limit of the step size is 1. As a re-
sult, the recovery of the original signal can be acquired
by SEVSMP within much less time.

3 Simulation Results

In this section, we illustrate that the SEVSMP is a
more powerful algorithm for sparse signal reconstruction
compared with other greedy algorithms by using numeri-
cal simulations. Measurement matrix @ is generated ran-
domly from Gaussian distribution which is independent
identically distributed N(0,1/M) and its dimension is M
=100, N =256. Algorithms OMP, ROMP, SAMP are
compared to the proposed algorithm. The experiments are
conducted in the environment of a Pentium ( R) Dual-
Core CPU at 2.6 GHz, using Matlab Version 2011b(7.
13.0.5664) .

3.1 Experiment 1

In fact, the restricted isometry constant §, is difficult to
calculate due to the randomness of the measurement ma-
trix. Besides, it is difficult to calculate §, in the field of
compressed sensing. As we know, §, is small and ranges
between 0 and 1. The experiment is implemented in order
to illustrate the effectiveness of sparsity estimation. The
sparsity K =30. For a fixed value K, the experiment is
repeated 50 times for each different §,.

According to Fig.2, a smaller §, means a greater fluc-
tuation of the sparsity estimation, and the estimation is

higher than the real sparsity in certain experiments. Con-
versely, the sparsity estimation is steady when §, is large.
The extreme case is that the sparsity estimation maintains
1 when §, is large enough. At this time, Algorithm 1 de-
generates into SAMP. This means that the SAMP is a
special case of Algorithm 1. It is clear that 5, =0.26 is a
proper initial value.

8g:
60 - —— 0. 18
—0.22
50 —*—0.26
—&—0. 30
0 - — - Exact sparsity

30

20

Estimation of sparsity

10

Number of experiment

Fig.2 Sparsity estimation of different 5, for a fixed sparsity

3.2 Experiment 2

The variable step size is another feature of the proposed
algorithm. In order to explain the practical process of the
variable step size, a typical algorithm process is shown in
Fig. 3. The sparsity is set to be K =30. With the increase
in step iterations, the step of SAMP is fixed with 1.
Before reaching the final sparsity, the iteration of stage is
30. However, due to the variable step, there are only 19
iterations, which is more than a 1/3 reduction than that of
SAMP. In SEVSMP, it is clear that the first step size of
first iteration is 3, and then the step size decreases to 2
until the 10th iteration. Finally, the step size decreases to
1, which approaches the real sparsity. This means that
different step sizes are used to approach the real support
set in each iteration.

30

[—o—SEVSMP
—+— SAMP
251
D
2 20
£
(=4
=
3 15}
3
£ 10
w)
5 -
0 1 1 1 1 1 1
0 5 10 15 20 25 30
Iteration of stage
Fig.3 Size of support set with variable step sizes between

SEVSMP and SAMP
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3.3 Experiment 3

The major interest of this experiment is to explore the
reconstruction successful rate among these four algo-
rithms. For each K, 500 simulations are conducted to cal-
culate the probability of exact reconstruction for different
algorithms. The halting condition g is set to be 0. 1 in
both SAMP and SEVSMP, and the threshold n =0. 15.

Figs.4(a) and (b) demonstrate that for binary sparse
signal and Gaussian sparse signal, the performance of the
proposed algorithm is close to that of SAMP and superior
to those of OMP and ROMP. As can be seen, for the bi-
nary sparse signal, SEVSMP requires less measurement
when the sparsity is fixed. For the Gaussian sparse sig-
nal, SEVSMP is slightly inferior to SAMP. The proposed
algorithm performs better for reconstructing the binary
sparse signal.

1.0¢<=
0.9
0.8
0.7
0.6
0.5
0.4
0.3

Probability of exact reconstruction

-—x=- OMP
0.2 | ——ROMP
- SAMP .
0.1F = SEVSMP \, ¢
0 1 1 1 *"‘« e _ ¥ :

5 100 15 20 25 35 40 45
Signal sparsity K
(a)

1.01
0.9
0.8
0.7
0.6
0.5
0.4
0.3F _ OMP
0.2+ ——ROMP

-o- SAMP
0.1 —=—SEVSMP

0 1 1 1
5 100 15 20 25 35 40 45

Signal sparsity K
(b)
Fig.4 Probability of reconstruction of different algorithms.
(a) Using binary sparse signal; (b) Using Gaussian sparse signal

Probability of exact reconstruction

3.4 Experiment 4

This experiment investigates the execution time among
different sparsities using these four algorithms. We use
the binary sparse signal as the original signal. For each
value of K, the experiment is repeated 500 times and the

average running time of each K is calculated.

From Fig.5(a), we can see that the running time of
SEVSMP is much less than that of SAMP and the running
time is reduced by at least 100% . On account of sparsity
estimation in the proposed algorithm, the proper initial
sparsity and support set are obtained to further pursue the
real support. Due to the initial sparsity information and
the variable step size, the running time is reduced signifi-
cantly. When K <40, the execution time increases with
the sparsity. The reason why execution time remains un-
changed when K >40 is that these two algorithms cannot
precisely reconstruct the target signal.

1.4r

—x-- OMP
1.2L —— ROMP

—o—-SAMP
—s— SEVSMP o - N

2 1.0} -

g -7

B=i Q"

2 0.8} #

E 0.6 K4

& /

& !

Signal sparsity K

(a)
L4r . omp
—o— ROMP
L.2F -o--SAMP
—&— SEVSMP
o 1.0F P
) _,"x‘
£ o8 e
E 0.6 },-’ 7
7 /
L% 9 ¥
0.4 p
/
/
0.2 4/
08== al ! ! 1 1 |
20 25 30 35 40 45

Signal sparsity K
(b)
Fig.5 Binary sparse signal reconstruction of different algo-
rithms. (a) Running time; (b) MSE

The mean square error ( MSE) of reconstruction using
binary sparse signal is shown in Fig.5(b). The MSE of
reconstruction is defined as

MSE = I =x [

x|

(15)

where X is the reconstruction signal.

From Fig. 5 (b), we can see that the MSE using
SEVSMP is the smallest among the four algorithms when
K < 35. The reconstruction MSE of the proposed algo-
rithm converges and remains steady similar to other algo-
rithms when K >35.
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4 Conclusion

In this paper, a novel greedy algorithm SEVSMP is
proposed for sparse signal reconstruction. As its name
suggests, the proposed reconstruction algorithm is fea-
tured mostly by sparsity estimation and the variable step
size. In addition, the prior knowledge of sparsity is un-
necessary. The simulation results prove that the recon-
struction time of the proposed algorithm is considerably
lower than that of SAMP due to these two features and the
reconstruction performance slightly outperforms SAMP. It
is shown that the proposed algorithm is appropriate for re-

constructing sparse signals.
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