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Abstract: In order to effectively improve the quality of
recovered single super-resolution
reconstruction method based on sparse representation is
proposed. The combination method of local orientation
estimation-based patch
component analysis is used to obtain a series of geometric
dictionaries of different orientations in the dictionary learning

images, a frame

image clustering and principal

process.  Subsequently, the nearest
orientation is adaptively assigned to each of the input patches
that need to be represented in the sparse coding process.
Moreover, the consistency of gradients is further incorporated
into the basic framework to make more substantial progress in
preserving more fine edges and producing sharper results. Two
groups of experiments on different types of natural images
indicate that the proposed method outperforms some state-of-
the-art counterparts in terms of both numerical indicators and
visual quality.
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mages with high-resolution (HR) are usually desired

in most electronic imaging applications such as medi-
cal imaging, remote sensing, and video surveillance'",
etc. The most straightforward solutions to an enhance-
ment in spatial resolution are to either reduce the pixel
size or increase the image chip size via sensor manufac-
turing techniques. However, both of them are severely
restricted by the physical limitations of the imaging sys-
tem"™
nomical to achieve the goal of resolution enhancement via

. Therefore, it is much more promising and eco-
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image processing techniques.

Single frame super-resolution reconstruction is such a
technique, and it will be referred to as “SR” hereafter.
SR is cast as the ill-posed inverse problem of recovering
an ideal HR image from only one observed low-resolution
(LR) image suffering from both blurring and noise. Con-
ventional SR approaches can be mainly divided into two
categories: interpolation-based methods"™ and regulariza-
tion-based methods'*'. Bilinear and bicubic interpolations
are the most common interpolation-based methods, which
utilize polynomial approximation models to calculate ev-
ery missing pixel within a local neighborhood. Their ad-
vantages are simple to understand and easy to operate,
whereas the fatal shortcoming is that they can barely re-
cover the high-frequency components lost or degraded
during the high-to-low sampling process. In order to find
a kind of better method, researchers turn to regularizing
the SR problem via some prior knowledge of natural ima-
ges, i.e., regularization-based methods. The total varia-
tion (TV) model”™, using the /,-norm of the first-order
derivative of the HR image as the regularization term, is
one of the most commonly used regularization methods
and has been widely employed in the fields of image de-
noising and super-resolution. However, due to the char-
acteristics of TV, it tends to smooth down the delicate de-
tails of the output images. Consequently, some impro-
ving algorithms based on TV are developed to overcome
this weakness'"™'.

In light of the fact that many natural images are actual-
ly sparse or compressible when expressed on a proper ba-
sis, another category, namely sparse representation-based
methods, has already been actively developed and suc-
cessfully applied in the application of SR''. The repre-
sentative work is proposed by Yang et al. """, In their
papers, a pair consisting of a HR dictionary and its corre-
sponding LR dictionary are learned in advance by extrac-
ting raw patches from some training images randomly,
and then sparse coding is applied to the overlapping pat-
ches sampled in raster-scan order from the input LR im-
age to obtain the sparse coefficients. Finally, the SR out-
put is recovered by averaging the overlapping HR patches
produced by the coefficients and HR dictionary. Although
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this scheme is proved to lead to a state-of-the-art result, it
is very time-consuming to obtain two large dictionaries
generated by random sampling. Hence, in Ref. [12], an
improved method is put forward, where a lessened dic-
tionary is utilized to accelerate the dictionary learning
process. Clustering techniques are added to the sparse
representation-based SR scheme to exploit the priors of
the extracted raw patches. Yang et al.'"”' employed multi-
ple dictionaries learned from several groups of patches pro-
duced by the K-means algorithm, where the superiority to
the prototype dictionary is experimentally validated. Peleg
et al. " also suggested a statistical prediction model which
results in better HR coefficients. The HR coefficients are
predicted from LR coefficients via a MMSE estimator.
From the analyses above, a conclusion can be drawn
that the determination of an efficient dictionary is a criti-
cal issue in the sparse representation-based SR scheme.
Lu et al. " pointed out that the performance of sparse
representation can be greatly improved by taking the ad-
vantage of the intrinsic geometric structure of training im-
age patches. Hence, it is crucial to explore the potential
geometric structure to enhance the existing SR perform-
ance. In this paper, we present a geometric structure-
based dictionaries learning method, by which the geomet-
ric dictionaries are learned. Moreover, the most suitable
dictionary is selected from the learned dictionaries for
each image patch to be processed. Due to the reason that
each part of the image is represented via the well-selected
dictionary, a better result can be obtained than merely
employing only one universal dictionary. Besides diction-
ary learning, one additional regularization term can also
be introduced into the basic SR scheme to further improve
reconstruction performance. The measurement of gradient
difference between the reconstructed HR image and the
observed LR image is used as the regularization term
here, which is significant for preserving the sharpness of
the edges in the reconstructed image. After introducing
the proposed SR method, an efficient iterative shrinkage
algorithm is adopted to mathematically solve it.

1 Proposed Method

Suppose that X is the ideal HR image, while the LR
image Y is a blurred and down-sampled version of X in
the same scenario. The observation model of the single
frame SR can be described as

Y = QHX +v (1)

where H represents the blurring operator; @ is the down-
sampling operator; and v is the error or additive noise.
The purpose of SR can be regarded as estimating the ideal
X as precisely as possible using only one input Y.

Since much information is discarded during the high-to-
low image acquisition process, the linear equation (1) is
severely underdetermined; i. e., infinite many solutions

may be suitable for (1). In order to obtain a proper solu-
tion, an additional regularization term is usually intro-
duced into the basic observation model for the reason that
this term can bring some priors of natural images. Conse-
quently, SR can be transformed into a more generalized
mathematical problem, which minimizes the cost function
as

minJ(X), J(X) = WY, QHX) +v(X) (2)

The first term in the right-hand side of (2) is called the
data error term, and V¥ is the function to measure the dis-
tance between the estimated and the observed images.
The second term is called the regularization term (or pen-
alty term).

1.1 Data error term

In most cases, the data error term in (2) is defined by
the [ -norm of the residual, which can be written as

(Y, QHX) = | Y - QHX|; (3)

According to Refs. [11 —16], the /,-norm is more suit-
able for the framework of sparse representation that is
used in this paper. As a result, the /,-norm is adopted in
this paper.

1.2 Sparse representation term

The regularization term in (2) is of great significance,
since it makes the underdetermined SR problem solvable
and ensures a proper and stable solution. Under the
framework of sparse representation, the SR problem is
regularized by the sparse prior that every local patch x,
extracted from HR image X can be represented as a linear
combination of few atoms (i.e., columns) from a proper
dictionary learned from a set of training images. Suppose

that X is of size /N x /N, then rearranged lexicographi-
cally to obtain a column vector X e R". The n x N matri-
ces R, is employed to extract the i-th local patch from X,
i.e., x, = RX. Considering the situation of maximal

overlaps, a total number of M = ( YN =Jn +1)? patches
can be extracted from X. For each patch x,, assume that
a known and proper dictionary D, is selected. Then the
estimate of x, and its sparse coefficient e, can be compu-
ted by a sparse coding operation. Subsequently, the opti-
mal estimate of the HR image is computed by averaging
all the estimated local patches according to Ref. [17].

X=(YRR) (YRDa) (4)

The matrix to be inverted in Eq. (4) is a diagonal one,
and thus the computation can be done on a pixel-by-pixel
basis to reduce the burden of computation. Additionally,
working on the overlapping patches and then averaging
the results can efficiently suppress noise and prevent block
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artifacts. Substituting Egs. (3) and (4) into Eq. (2), the
basic objective function is formulated as

a =argmm{HY OH( ZRR

ZR D a)H
; ”W,-a,-H]} (5)

where a is the concatenation of all sparse coefficients a;,

and W, is a diagonal matrix whose diagonal entries are in-

versely proportional to the corresponding magnitude of
_ [18]

w,, =1/(a; +&) . The

sparsity regularization term has already been changed from

l,-norm to [ -norm as long as the coefficients are suffi-
[19-20]

sparse coefficients, 1i. e.,

ciently sparse due to the non-convexity of /;-norm
1.3 Geometric dictionaries learning and selection

Clearly, two key procedures left incomplete in the pre-
vious subsection are dictionary learning and selecting one
dictionary for each local patch adaptively. Considering
that the potential geometric structure is of great signifi-
cance in enhancing the SR performance, a local orienta-

16,21 .
1621 i used to

tion estimation-based clustering method
pre-classify the raw training patches into K clusters. Since
the patches belonging to the same cluster have similar ori-
entations, we decide to learn a PCA-based compact dic-
tionary from them instead of an over-complete one, and
the final geometric dictionaries are the concatenation of
all K compact dictionaries. The specific process of this
dictionary learning method is summarized as follows:

Step 1  Extract raw patches from training images ran-
domly, and estimate the local orientations of each patch
based on the calculation procedures described in Ref. [21].

Step 2 Classify these patches into K directional clus-
ters according to estimated local orientations.

Step 3  For each cluster, apply PCA to it to obtain an
orthogonal transform matrix which is the compact diction-
aries of this cluster. In all, we can obtain {D,}’,.

Then for the i-th patch x, to be represented, the nearest
dictionary D, is adaptively assigned to it according to the
estimated local orientation, and its coefficient can be
readily calculated by @, =D, x,.

1.4 Consistency of gradients

To achieve a further improvement, we consider the
consistency of the gradients ( CG)'™ between the ob-
served LR image Y and the estimated HR image X, which

can be mathematically defined as
4

TVY, 0V x0) = X [VY -0l (6

The gradients are calculated without considering the
blurring operator, since this term is originally designed to
preserve more fine edges and produce a sharper output.
Gradient operators in four directions are computed accord-

ing to
ViX=(S. +S ' -2DX
V.X=(S,+S ' -2DX
= (0. SS;ISVf, +0. SSVI‘S;1 -DHX
X=(0.58,8, +0.58'S"' - DX (7)
where S*' and Sfl represent the matrix operators of shift-

ing +1 pixel in the horizontal and the vertical directions,
respectively. The calculation of V,Y is the same as that of

VX
1.5 Summation and implementation

By incorporating the regularization term of consistency
of gradients defined in (6) into the sparse representation-
based SR scheme in (5),
this paper is

the final objective function in

a = arg main{HY -QH( iR;rRi)—l
i=1

M
(S &)+
M 4 -

Merging the 1st and the 3rd terms in Eq. (8) together,
it can be rewritten as

« = arg min
«

Y OH :
"V:‘Y ”QV‘ ZRR ZRDa) +
‘flv‘4Y TIQ v, 2
S IWal} o)
By defining
Y OH
n VY -y, eVl _ g (10)
V.Y Q.

Eq. (9) can be changed into a briefer form as

(S EDa)|+

A

a = arg mﬂin{ HY’ -H'( ﬁR;TRz)_
i=1

M
> W}

There is no closed-form solution for the above weigh-
ted /,-minimization problem. However, it can be solved

(1)

effectively by the iterative shrinkage algorithm''. The
outline of the process for solving (11) is given below.
Step 1
The initial estimate of X, denoted by X', is calculat-
ed via applying bicubic interpolation to the input LR
image Y. Train the geometric dictionaries and determine

Initialization.

the initial selection according to subsection 1.4.
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Set the initial values: 7, P, the maximal iterations L
and iteration counter / =0.

Step 2 Iterate / until / > L is satisfied.

Compute X™ =X + H''(Y' - H'X"") and &™ =[D;
R X™,...,D/R,X™].

Update a''*" =S, (a™), where S, is the soft-thresh-
olding function defined in Ref. [23] and W is the concat-
enation of the diagonal entries in all W,; and update
X"V using (4).

In order to save computational cost, the selection of
dictionaries is updated every P iterations instead of every
time.

2 Experimental Results

To demonstrate the effectiveness and robustness of the
proposed single frame SR method in terms of both visual
perception and objective criteria, two sets of experiments
are conducted. In each of the experiments, our method is
compared with three state-of-the-art methods, namely the
classic bicubic interpolation method, the example and
sparse coding based SR (SCSR) ', and statistical model
based SR (SMSR) . Moreover, to show the effective-
ness of CG, the basic method in this paper ( without CG)
is also added to the comparisons.

2.1 Experimental settings

For dictionary learning, an approximate amount of
80 000 patches of size 7 x 7 are tailored randomly from
several high-quality training images in the first place.
Then our geometric dictionaries are trained with K =183.

In order to obtain the degraded LR images that are used
as input in the following synthetic experiments, six differ-
ent types of natural images ( Butterfly, Lena, Parrot, Par-
thenon, Pepper and Zebra) are selected, which are com-
monplace samples in the literature of single frame SR.
Then, these images are blurred via a Gaussian filter of
size 7 x 7 with standard deviation 1.6, followed by a
down-sampling process with a scaling factor of 3 in both
horizontal and vertical directions. The local patches ex-
tracted from the HR image are still of size 7 x 7 with 6-
pixel overlaps between adjacent ones. Empirically set 5 =
0.01, P=40 and L =1 400. For colour images, all of
the testing methods are only imposed on the luminance

component, since the human visual system is more sensi-
tive to changes in luminance. The chromaticity compo-
nents are simply interpolated using bicubic interpolation
from the input LR image to the target HR image. To
evaluate the performance of SR algorithms, the recon-
structed images produced by various methods are contras-
ted in terms of both visual qualities and two numerical in-
dicators (i.e., PNSR and SSIM"™). For a fair compari-
son, image borders are included in the calculation of both
two numerical indicators, which is omitted in Ref. [14].

2.2 Experiment 1: comparisons on noiseless images

In this part, all the methods are evaluated under the
noiseless condition, i.e., suppose that v=0. Due to the
limitation of content, only one visual comparison on Par-
rot image is graphically shown in Fig. 1. As we can see
from it, bicubic interpolation recovered an excessively
smoothed image which is often unacceptable in real appli-
cations. The basic method performs a little better than
SMSR, while both achieve better results than SCSR on
sharpness preserving. By adding the CG term, the pro-
posed method further improves the reconstructed image in
the aspect of producing more fine structures and sharper
image edges, leading to the most satisfying visual quality.
All the PNSR and SSIM results are shown in Tab. 1, from
which a consistent conclusion that the proposed method
obtains the highest PSNR and SSIM can be obtained.

(d) (e) ()

Fig.1 Visual comparison of noiseless Parrot by different meth-

ods with an up-scaling factor of 3. (a) Original image; (b) Bicu-
bic; (c¢) SCSR; (d) SMSR; (e) Basic method; (f) Proposed method

Tab.1 Numerical comparisons of PSNR and SSIM results of recovered images under noiseless condition

Method Butterfly Lena Parrot Parthenon Peppers Zebra Average
e PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM
Bicubic 22.46 0.7680 28.91 0.8087 26.76 0.8533 25.29 0.6573 29.68 0.84830 24.79 0.7224 26.32 0.7763
SCSR  23.90 0.7983 29.74 0.8248 28.00 0.80689 25.85 0.6840 30.30 0.8515 26.29 0.7681 27.35 0.799 3
SMSR  26.51 0.9022 30.74 0.8776 28.82 0.9105 26.64 0.7380 31.32 0.8868 28.24 0.8426 28.71 0.8596
Basi
m;;td 26.72 0.8947 31.68 0.8748 29.87 0.9098 26.79 0.736 8 34.28 0.8871 28.68 0.8465 29.67 0.8583
Proposed
27.31 0.9078 31.87 0.8781 30.21 0.9130 26.97 0.7419 34.56 0.8891 29.06 0.8523 30.00 0.8637

method
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2.3 Experiment 2: comparisons on noisy images

Due to the fact that the input LR images are often con-
taminated by noise in practice, it is necessary to test the
robustness of these methods against noise. So in this
part, Gaussian white noise with a standard deviation of 5
is further added to the same six input LR images that are
used before. Tab.2 and Fig.2 show all the numerical re-
sults and one of the visual comparisons, respectively. In
contrast to the previous performance, the competitive
method SMSR results in not only serious noise-caused ar-
tifacts in recovered images but also very severe drops in
numerical indicators. The reason for this is that a specific
set of parameters in SMSR is trained to work efficiently
under certain conditions. If the circumstances are slightly
changed, the parameters all need to be retrained (reset).
In other words, its parameters are so sensitive to the
changes of blurring and noise, which is its fatal draw-
back. On the contrary, the proposed method still leads to
quite decent results with a reasonable drop of approximate

1.3 dB on PNSR compared to those in the previous sub-
section. Note that here we still employ the same settings
in Experiment 1 without any change in either the dictiona-
ries or parameters. Moreover, from the aspect of

Fig. 2
ods with an up-scaling factor of 3. (a) Original image; (b) Bicu-
bic; (c¢) SCSR; (d) SMSR; (e) Basic method; (f) Proposed method

Visual comparison of noisy butterfly by different meth-

Tab.2 Numerical comparisons of PSNR and SSIM results of recovered images under noisy conditions

Method Butterfly Lena Parrot Parthenon Peppers Zebra Average
etho
PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM
Bicubic 22.40 0.7511 28.62 0.7823 26.60 0.8233 25.17 0.6402 29.36 0.8210 24.69 0.7095 26.14 0.7546
SCSR  23.74 0.7674 29.05 0.7663 27.53 0.7976 25.56 0.6437 29.54 0.7885 25.97 0.7363 26.90 0.7500
SMSR  22.94 0.6442 24.94 0.5133 24.67 0.5073 23.47 0.4788 25.21 0.6302 24.07 0.7537 24.22 0.5879
Basi
é:;lcd 25.61 0.8388 30.12 0.8211 28.96 0.8740 26.11 0.6927 32.47 0.8422 27.54 0.7850 28.47 0.8090
metho
Proposed
method 26.13 0.8665 30.30 0.8247 28.96 0.8744 26.26 0.6955 32.85 0.8517 27.82 0.7872 28.72 0.8167
visual sense, the proposed method not only suppresses
References

noise but also preserves more delicate edges in the recon-
structed image than any other methods, showing a strong
robustness to noise.

3 Conclusion

In this paper, a sparse representation-based single
frame super-resolution reconstruction method is proposed.
The proposed method utilizes local orientation estimation
based image patch clustering combined with the PCA al-
gorithm to learn a series of the geometric dictionaries of
different orientations, from which the dictionary of nea-
rest orientation is selected for each local patch to be repre-
sented in the sparse coding process. Additionally, the CG
regularization term, which can better preserve image ed-
ges, is further incorporated into the basic model to obtain
a further improvement in the visual quality of reconstruc-
ted images. The iterated shrinkage algorithm is adopted to
give a mathematical implementation. Extensive experi-
ments on noiseless and noisy images demonstrate that the
proposed method can achieve much better results than
some state-of-the-art algorithms in terms of both numeri-
cal indicators and visual perception.
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