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Abstract: To develop modal ( MMS )
identification techniques and improve their applicability in a

macro-strain

continuous health monitoring system for civil infrastructures,
the concept of operational macro-strain shape (OMSS) and the
corresponding identification method are proposed under
unknown ever-changing loading conditions, and the MMS is
then obtained. The core of the proposed technique is mainly
based on the specific property that the macro-strain
transmissibility tends to be independent of external excitations
at the poles of the system and converges to a unique value.
The proposed method is verified using the experimental data
from a three-span continuous beam excited by an impact
hammer at different locations. The identified results are also
compared with the commonly used methods, such as the peak-
picking (PP) method, the stochastic subspace identification
(SSI) method, and numerical results, in the case of unknown
input forces. Results show that the proposed technique has
unique merits in accuracy and robustness due to its combining
multiple tests under changing loading conditions, which also
reveal the promising application of the distributed strain
sensing system in identifying MMS of operational structures,
as well as in the structural health monitoring (SHM) field.
Key words: macro-stain/distributed strain; fiber Bragg
grating ( FBG); operational modal analysis ( OMA );
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n recent decades, many research endeavors have fo-
I cused on the use of modal parameters involving fre-
quency, mode shape, and modal strain energy to detect
damage in civil infrastructures. These modal-related dam-
age detection methods were proved to be effective and
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. Therefore, the acquisition of reliable and
robust modal parameters is the first and foremost concern
to be settled. In terms of modal analysis, one of the ma-
jor drawbacks when using frequency response function
(FRF) in the frequency-domain methods is the necessity
of knowing the external excitations being applied to the
structures, which is impossible for large scaled structures,
such as bridges or buildings in operation. Therefore, some
time-domain methods, such as stochastic subspace identifi-
cation (SSI) and peak-picking (PP) methods which do not
need the specific knowledge of applied forces in many ca-
ses, are more appropriate for operational mode identifica-
tion'”'. However, different loading conditions may lead to
unacceptable errors in results between different tests. Fur-
thermore, a different choice in fitted model ranks may result
in various outcomes in the SSI method, which needs to be
determined by combining the finite element model (FEM),
and the PP technique seems incapable of pinpointing high-
order modes within the noisy environment. Thus, results
based on these methods usually cannot meet expectations.
Ambient excitations applied to structures always vary in
locations and magnitudes under different operational condi-
tions, e. g., moving vehicles, wind loads applied to a
bridge. Due to the lack of input information, mode shapes
cannot be normalized by mass matrices. Hence, it is rea-
sonable to expect that mode shapes will undergo noticeable
changes under different operational conditions'”. Conse-
quently, it may not be helpful to make use of mode-based
methods for structural health monitoring (SHM) .
Developments over the years on the distributed strain
measurement techniques are considered to be effective for
data acquisition measures, which can easily capture both
the global and local information of the structure'”.
Hence, this technique and the corresponding macro-strain
modal identification strategies have been developed rapid-
ly”™ . This paper aims to extend the previous research
concerning the macro-strain modal identification and its
application, which will enlarge our knowledge in SHM for
employing distributed optical fiber sensing techniques. The
specific property that the macro-strain transmissibility tends
to be independent from the excitation force at the poles of
the system and converges to a unique value will act as the
basis of the proposed technique. Numerical analysis and
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experimental verification are also provided in this paper.
1 Theoretical Derivation
1.1 Establishment of operational macro-strain shape

The macro-strain frequency response function ( SFRF)
can be expressed as'"’

k
£,(2)
o) = =
e,p‘( ) k(ﬂ)
N N N 1
z Lhm djmrdjerlk 2 .
m=1 r=1 1=1 K, -0 M, +].QC,4

(1)

where £, denotes the macro-strain response measured by
the h-th sensor with the force p applied at the coordinate
k; @, , @, are the r-th mode shape values of the m and /
nodes, respectively; L is the strain transformation matrix
linking displacements to macro-strains; M,, K, and C, are
the generalized modal mass, stiffness, and damping, re-
spectively; 2 = {w,, w,, ..., w,} is the resonance fre-

quency matrix. G is the load effect matrix. Let o,
N

= z L, @, be the r-th macro-strain mode value in a

m=1
length of gauge, and then, the SFRF can be written in a
partial fraction form as
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where J denotes the number of modes. From poles A,
b, LD,
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A, and residuals L
cies and macro-strain mode shapes corresponding to vari-
ous orders of macro-strain modes can be obtained by
using the singular value decomposition ( SVD) algo-
%1 respectively. The macro-strain mode shapes can
be also obtained by linking peak values at the same fre-
quency of the SFRFs.

For a long-gauge measured element in a linear structure
with stationary stochastic processes from the auto and cross
spectral densities, the following two equations are given:
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Here, we define 17 f.s,(‘()) as the macro-strain transmis-
sibility between coordinates i and j when force p is ap-
plied on coordinate k. The operational deflection shape
(ODS) is the deflection shape of a structure subjected to a
single frequency harmonic excitation''”. Similarly, the
concept of the operational macro-strain shape ( OMSS)
herein is proposed to obtain a good knowledge of the au-
thentic macro-strain state for the structure at the given fre-
quency. Usually, the OMSS can be obtained from SVD

or linked values of SFRFs at the arbitrary selected fre-
quency, and from which modal macro-stain shapes can be
obtained at the poles of the system (resonance frequen-
cies) corresponding to predominant peaks. Unfortunate-
ly, the OMSS cannot be directly extracted from SFRFs
due to an unknown input force. However, inspired by
Ref. [15], the macro-strain transmissibilities can be used
instead to express the OMSS, which can be described
with transmissibilities of macro-strain responses by choo-
sing a fixed reference sensor i, and consequently the ob-
jective can be achieved.

OMSS(w,) =[TZ‘PS’(w,), T’;;g‘(wr), oy 1,
Ty (o), T (0] (5)

The referred sensor i can be set arbitrarily except for
the modal node with zero value. The subscript k denotes
the k-th test. However, it should be noted that frequen-
cies corresponding to predominant peaks can only be re-
garded as pseudo resonance frequencies since they are the
spurious poles of the system, which are quite different
from those obtained from SFRFs; thus, OMSSs at these
extrusive frequencies cannot be deemed as MMS. Only if
the OMSS is at the authentic pole of the system, can it be
interpreted as MMS. Hence, the issue of the MMS iden-
tification is adjusted to find the poles of the system.

1.2 MMS identification from OMSS

In the previous section, the OMSS is defined as the
macro-strain state of an operational structure at a given fre-
quency and the modal macro-strain shape can be obtained
by the OMSS at the poles of the system (resonance fre-
quencies). The resonance frequencies in general are ob-
tained from the values corresponding to the predominant
peaks in SFRFs. However, note the fact that transmissibil-
ities can vary with the location of input forces''”. As a re-
sult, the correct poles from strain transmissibility response
function (STRFs) are still need to be determined due to
the inconsistence between STRFs and SFRFs. There is an
identification algorithm by using macro-strain transimissibili-
ties, which will facilitate obtaining the poles of the system.

Considering Eq. (2) and taking the limit value of Eq.
(4) yields
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Substituting Egs. (7) and (8) into Eq. (6), the following
expression can be obtained:

J
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Similarly, Eq. (10) can be also obtained when the force p
is applied at coordinate g.
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When the limit value of the transmissibility function for
s approaches to the system’s pole A, it converges to @,/
D,
tions in this case are excluded from the role of the force
location of k or g.

It is not difficult to observe that the limit values of the

which implies that macro-strain transmissibility func-

subtraction between the two transmissibility functions with

respect to different input locations satisfies the
following equation:
Hm[T?  (s) =T ,(s)] =0 (11)
S—A, o o

Eq. (11) means that there are several intersection points
to be revealed in the same figure by using different trans-
missibilities in different loading cases, which can be real-
ized by using the proposed method of combining multiple
test data. To illustrate the determination of the identified
results, the reciprocal value of the subtraction in different
transmissibilities, named as RDT, is defined. This contrib-
utes more to illustrate the results since it shows the dominant
peaks in the same manner of the power density spectrum.

RDT’:::"(S) :1/[T’;f'€/(s) —T’;jvgj(s)] (12)

To clarify the proposed MMS identification technique
using only output data under the changing loading condi-
tions, a flow chart is given as shown in Fig. 1.

2 Experimental Investigation
2.1 Specimen details

The experiments were carried out on a three-span con-

Macro-strain frequency response

function (SFRF/SPSD)

Eq.(1)

Macro-strain transmissibility

frequency function (STRF) Eq.(4)

Operational macro-strain

shape (OMSS) Eq.(5)

Subtraction in different
transmissibilities (RDT)

!

Macro-strain
mode frequencies

!

| Macro-strain mode shape |

Eq.(12)

Fig.1 Flow chart of proposed MMS identification technique

tinuous simple supported steel beam (1.1 m + 1.4 m +
1.1 m, 3.6 m in total) in the following physical charac-
teristics: Young’s modulus of 200 GN/ m?*; the mass den-
sity of 7 850 kg/m’; the dimensions of 3. 400 m X
0.500 m x 0. 008 m (see Fig.2). Four elaborate piers
with hinges are installed to support the beam. Small gaps
between the bolt and bolt hole are reserved to release mo-
tion in a longitudinal direction. Degrees of freedom in
transverse and vertical directions are restricted, as well as
the rotation around transverse direction.

Fig.2 The experimental specimen and data acquisition system

2.2 Measurement Scheme

A set of commercial fiber Bragg grating (FBG) strain
sensors are attached at the bottom of the girder to show
their high precision performance in the test. The gauge of
each sensor is set to be 0.2 m. Hence, there are 17 sensors
in total, as illustrated in Fig.3. The demodulating system
(Sm130, Micron Optics, Inc.) is used for the macro-
strain data acquisition at a sampling rate of 100 Hz.

| | | i
1O ® 1 @ ©) (1) 1® ® @ L
_I_l'—_:___’i'_______________’_'______’_‘______'_'_____’—'—'______'_‘I__l_
T ® @ T ® ® @T ® ® T
O.I‘I_ 1.0 L 1.4 L 1.0 IP.L
A | 3.6 | |

e—— FBG (0.2 m for guage length)

Fig.3 Scheme of FBG sensors placement attached at the bottom of the girder (unit: m)
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2.3 Experimental procedures

Impact testing is generally a common way to excite a
structure with equal energy distribution within a band of
interest, which will result in a multi-mode excitation. In
this experiment, the impact force is first applied at the po-
sition of 0.4 m (the second sensor) by using an impact
hammer, and then the repetition is performed at the location
of 1.4 m (the seventh sensor) along the beam. Two sets of
time-history macro-strain data are collected and stored in the
database, and then they are transferred to a Matlab ( Version
2012b) environment for advanced processing.

3 Results and Discussion

Figs.4(a) and (b) reveal the waterfalls of the SFRFs
and STRFs in all FBG sensors, respectively. Four peaks
in each SFRF can be observed, as well as three peaks in
each STRF. Clearly, the frequencies at the peaks in
SFRFs are the various orders of the MMS. However, the
frequencies corresponding to the prominent peaks can on-
ly be regarded as pseudo poles in STRFs. Moreover, the
maximum and minimum values of STRFs do not coincide
with those of SFRFs.

Magnitude/dB
(=]

50
30 20 0 0
1% Tequency/Hy @
(a)

Magnitude/dB
=

30 20
FPequency/Hz

(b)
Fig.4 Comparison of SFRFs and STRFs from all FBG sen-

sors. (a) Waterfall of normalized SFRFs; (b) Waterfall of normalized
STRFs

By picking and jointing the peaks of the STRF of each
FBG sensor in waterfall figures, the OMSSs are obtained
as presented in the first section. Figs. 5(a), (b), (c)
and (d) illustrate the un-normalized MMSs corresponding
to the first four order modes, respectively. Figs. 5(e),
(f) and (g) show some un-normalized OMSSs at selected
outlier frequencies; however, they do not represent any
order of the MMS. These OMSSs comprise not only the
structural information but also excitations. Therefore, the

=)
<
?
<
b=
= 4 6 8 10 12 14
Sensr)rnumhﬁr o
()
=)
=
3
2
5 o 6 8 10 12
14
Sensornumher i1
(b)
=)
3
3
=
Eb -1
6 8 10 12 14
Sensor number 16 18
(¢)
==}
<
2
k=]
=
5 =
6 8 10 12
Sensor number 4 16 18
(d)
8
> 20
E oo
3_20 2 2
6 8 10 12 14
Sensor number 16 18
(e)
g
B 5
ER)
5 =03 4
6 8 10 12
Sensor number 14 16 18
()
g
> 0
T o
& _s0
= 0 2 4 6 8 10 12

14 16 18

Sensor number
(2)
Comparisons of MMS and OMSS at outlier frequen-
cies. (a) The Ist MMS at 12.16 Hz; (b) The 2nd MMS at 21.20 Hz;
(¢) The 3rd MMS at 24. 88 Hz; (d) The 4th MMS at 46. 12 Hz;
(e) The 1st OMSS at 13.42 Hz; (f) The 2nd OMSS at 23. 45 Hz;
(g) The 3rd OMSS at 41.32 Hz

Fig. 5
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poles of the system (resonance frequencies) should be de-
termined by Egs. (4) to (12) first to eliminate the influ-
ence of the input force and then to obtain MMSs.

To verify the accuracy of the proposed method, a
three-dimensional finite element model (FEM) of the ex-
perimental specimen is established (see Fig. 6) and will
further be used to perform the modal analysis by the FE
software of ANSYS (Version 12.0). The result will act
as the baseline for comparison.

i

Fig.6 FEM corresponding to experimental specimen

The resonance frequencies identified from the proposed
RDT procedure are compared with those from the widely
used SSI and PP methods as well as numerical results as
shown in Tab. 1 and Fig. 7. It can be seen that the reso-
nance frequencies identified by the proposed technique
agree well with other independent methods. However,
the proposed method is of much higher accuracy, while
the PP method has low capacity to recognize higher
modes and the stabilized dots for the SSI method appear
at non-resonance frequencies.

Tab.1 Comparisons of identified resonance frequencies from
different methods Hz
Mode FE PP SSI RDT
frequency method method method method
The 1st mode 12.16 11.72 11.65 12.30
The 2nd mode 21.07 21.09 21.61 20.95
The 3rd mode 24.95 24.08 24.90
The 4th mode 45.96 45.86 45.95
1. 001 hd * * —— RDT
* PP
= * SSI

Magnitude/dB

0 1 1 1 1 1

0 10 20 30 40 50
Frequency/Hz
Fig.7 Comparisons of identified resonance frequencies from
different methods

Fig. 8 shows the comparisons of the maximum-value-
normalized MMS between experimental identified results
from the proposed technique and numerical results from
the FE method at the first four resonance frequencies. It
can be easily seen that these two results differ little in both
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Fig. 8 Numerical and experimental comparisons at the first
four resonance frequencies for MMSSs. (a) The Ist order; (b) The
2nd order; (c¢) The 3rd order; (d) The 4th order
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magnitude and phase,
MMSs, which is promising for our goals.

particularly for the first two

4 Conclusion

The concept of OMSS and the associated MMS identi-
fication technique are proposed to estimate modal macro-
strain parameters including resonance frequencies and
macro-strain mode shapes of a structure. It is more close
to the reality for employing OMSS at the poles of the sys-
tem to express MMS for operational structures. Compared
with the previous MMS identification methods under
changing ambient excitations, the proposed method has
several unique merits: First, it is applicable for huge
structures of which the external excitations are unknown;
secondly, it is capable of pinpointing high-order macro-
strain modes compared with the PP method; and it has
good robust results due to the reason that it allows for the
combination of multiple tests.

The proposed method is independent with the input
forces applied to structures at the poles of the system.
The unknown operational forces can be arbitrary, such as
colored noise, swept sine, impact, etc., as long as they
are persistently exciting within the frequency bands of in-
terest, which implies a potential capacity for use in real
operational structures.
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