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Abstract: Some sufficient and necessary conditions are given
for the equivalence between two crossed product actions of
Hopf algebra H on the same linear category, and the Maschke
theorem is generalized. Based on the result of the crossed
product in the classic Hopf algebra theory, first, let A be a
k-linear category and H be a Hopf algebra, and the two
crossed products A# H and A#,H are isomorphic under some
conditions. Then, let A# H be a crossed product category for
a finite dimensional and semisimple Hopf algebra H. If Vis a
left A#, H-module and WC V is a submodule such that W has a
complement as a left A-module, then W has a complement as a
A#_H-module.
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roup-graded rings and algebras have been the study

focus and several fundamental results have been ob-
tained. Cohen and Montgomery''' obtained the duality
theorem for graded algebras. In this paper, the graded al-
gebras are treated from the point of view of Hopf alge-
bras. A G-graded algebra A can be viewed as a kG-co-
module algebra, and thus can be viewed as a k°-module
algebra when G is a finite group. In fact, the concept of
graded algebras can be extended to linear categories,
leading to group-graded k-linear categories. Similarly, if
a k-linear category is graded by a finite group G, then it
can be called a k°-module category. More generally, it is
natural to define the concept of the module category for
any Hopf algebra H, as done in Refs. [2 —4].

As a continuation of the work in Ref. [5], we provide
some sufficient and necessary conditions for the equiva-
lence between two crossed product actions of Hopf alge-
bra H on the same linear category, and generalize the
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Maschke theorem.
Throughout this paper, we work over field k, and all
the vector spaces, algebras and tensor product are over k.

1 Preliminary

In this section, we recall the concept of the crossed
product of a linear category with a Hopf algebra H. For
the crossed product action of a Hopf algebra H on an al-
gebra, one can refer to Refs. [6 —7]. If A is a linear cat-
egory and x, y are objects of A, we denote A, the space
Hom(x, y), and denote A, the class of objects.

Definition 1 The weak action of a Hopf algebra H on
a linear category A is defined by the map H® A — A,
given by h®  f, >h + f,, for any x,ye A, and he H
such that

he (g, f) =2 (h+g)e (h- f)
hel, =e(h)l 1, f =
where fie A, g € A,

Definition 2 Let H be a Hopf algebra and A be a
k-linear category. Assume the weak action of H on A and
o=1{o,{,., e Hom(H®H,A) with ¢, € Hom (H®
H, A ) convolution invertible. The crossed product
A#_H of A with H is a category such that (A# _H), =A4,,
and for any objects x, y and z, ,(A# H) = A ®H asa
vector space. Therefore, the composition of morphisms is
given by

(8#h) o ([ f#h) =3, g, (h + f)° o (hy,k)#hk,

forany h, keH, g e A, f. e A,.

In what follows, we assume that the morphisms of all
crossed product categories are associative with identity
morphisms {1 #1,|

xed,*

2 Equivalence Between Two Crossed Product
Categories

Definition 3 Let H be a Hopf algebra and A be a k-
linear category. Consider the crossed product A# _H. We
call the action of H on A inner if there is a collection of
vea, With u, € Hom (H, A, ) convolution
invertible such that for any f € A and he H,

hefo =Y u(h)o foou(h)

The above equation has an equivalent form:

maps u = {u_|

(1)
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D (h e f)euhy) = Y u(h)e f, (2)

Proposition 1 Let A be a k-linear category and A#_H
be the crossed product such that the action of H on A is
inner, via some invertible u e Hom( H, A). Define 7 =
{7.},., eHom(H®H, A) by

r.(h, k) = 2 u (k)u (h)o,(hy k) u, (hk,)
(3)

Then 7 is a cocycle and A# H=A_[H], a twisted
product with trivial action and a category isomorphism
which is also a left A-module, right H-comodule map.

Proof  Define ¢: A# H—>A [H]by f#h—
2 , fou.(h)) @ h,. Itis easy to confirm that ¢ is a left
A-module and a right H-comodule map. Then define ¢ :
A [H]-A#,Hby f®h— Y, fu (h)#h,.

It is straightforward to confirm that ¢ and ¢ are inver-

ses. We show that ¢ is an algebra map. For any _f,, g,
inA, and h, ke H,

ol (L (e#) ] =0 3 10 - 80, (h kK, | =
Y, Sk 8o (hy k) u (hky) @k, =
z zf).uy(hl )8y (hy) o, (hy k) u, (hk,) ®hsky =
Y, fu,(h),gu (k)7 (hy k) @k, =

[ 3 rupen] ][ ¥ gutk) @k] =
(. f,#h) (g k)

Since A, [ H] =A#_H as categories, the composition in
A_[ H] is associative and 7 is a cocycle.

Now we give some necessary and sufficient conditions
for the two crossed products to be isomorphic.

Theorem 1 Let A be a k-linear category and H be a
Hopf algebra with two crossed product actions h& , f, >
h- f.and h®  f, F>hD> | f, with respect to two cocycles

o, o' :HR®H—A, respectively. Assume that

¢ :A# H—A# H
is an isomorphism of linear category, which is also a left
A-module and a right H-comodule map. Then there is a
collection of invertible maps u = {u,}, , e Hom(H, A)

such that for any f e A, h, keH,

D) o(, f#h) = 3 fau (h)# s

2) hl>yfx = Z uy_l(hl ) (hz 'yfx)ux(h3> H

3) 0'Ix<hyk> = 2 u;] (hl)[hq 'u;l(k])]a'x(h3 9kz)ux(h4k3>~

Conversely given a collection of maps u = {u, |, , €
Hom(H, A) such that 2) and 3) hold, then the map ¢
in 1) is an isomorphism.

Proof Define u, e Hom(H, A, ) by u (h) = (id®
g) (1, ®h) for any h e H. Then

(id®e)o( f#h) = (id®e) | (,f,®1)[@(1 #h)]] =

Joou (h)

as ¢ is a left A-module map. Since ¢ is a right H-comod-
ule map, we have

(Id®A) » ¢ = (p®id) o (id®A)

Apply id® e ®id to both sides of the equation. The left
side becomes ¢, and the right side becomes [ (id®¢g) o
e®id] o (id®A), which evaluated at  f,#h is

2 (d®e) ool fl#h) @by, = 3 fu(h) ®h,

This proves 1).

Similarly, if ¢ ':A#' H—A#_H is an isomorphism
satisfying the same hypotheses of ¢, we may set v, (h) =
(id®e)¢ ' (1,®h) and conclude as above that ¢ ~' (| f,

#h) =Y fov, (h)#h,. We claim that v=u"".

Lih = o o(1#h) =7 [ Tu(h)#h, ] =
2‘14X(hl)v(h2)#h3

Applying id®e to both sides, we obtain 2 u (h)v. (h,)
=g(h)1,. Similarly we obtain z v.(h)u. (h,) =e(h)l,,
and thus v=u"".

Now the equation ¢ ' [ (g, #'h) (, f#k)] =¢ " -
(.g#h)e " (,f#k) becomes

z :gy(hl > foo' (hy, k)v (hk,)#hk, =
z Zg)'vy[ (hl ) (hz -y](:\'v,\j(kl ) ]Ux(hs ’kz)#h4k3

Setx=y=zand f=g =1_, and apply id ® ¢ to both
sides, we obtain

D o (b, kv (k) = v () hy v (k) o, (s, &)

This proves 3) after inverting v ( hk) and using v

-1
=u .

Again using the above equation with y =z, g=1, and k
=1, and applying id®e to both sides, we have

D (> fov.(hy) = Y v,(h)(hy - f)

Inverting v, we obtain 2).
The converse follows as in the proof of Proposition 1.

3 Generalized Maschke Theorem

Recall from Ref. [ 5] that for a crossed product catego-
ry A#_H, the family of maps y, . H— A # H given by

h -1 #h is invertible in Hom(H, A # H). Then by the
equation

(L#h) (, f#1) =

denoting f=f#1, we have

h-f= Z%(hl)f)’;](hz)
for any he H and fe A .

2 Chy - f)#h,

(4)
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Recall Ref. [8 ], let A be a k-linear category. A left Syl (t)m o (1, b))y (th) -v] =
module over A is a family of linear spaces M = { M} _, . B P
together with the structure maps - : A ® M— M satis- 27 (1) (6 by Ly, (1h) - v] =
fying Zyx(hl)'}’;l(tlhz)ﬁx[')’x(tzh_%) : V] =

S (g om)=fgem 1 -m=m 2 vy (1w [y, (1) - v] =
A morphism of the left A-module is a family of linear Y. (W) (v)
maps u = { u: M— N} _, satisfying Thus 7 is a left A#_H-map. Finally, if We W, then it is
u(fem) =f+ ulm) easy to confirm that 77 (w) =w. The proof is completed.
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