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Abstract: A scheme that can realize homomorphic Turing-
equivalent privacy-preserving computations is proposed, where
the encoding of the Turing machine is independent of its inputs
and running time. Several extended private information
retrieval protocols based on fully homomorphic encryption are
designed, so that the reading and writing of the tape of the
Turing machine, as well as the evaluation of the transition
function of the Turing machine, can be performed by the
permitted Boolean circuits of fully homomorphic encryption
This scheme overwhelms the Turing-machine-to-
circuit conversion approach, which also implements the

schemes.

Turing-equivalent computation. The encoding of a Turing-
machine-to-circuit conversion approach is dependent on both
the input data and the worst-case runtime. The proposed
scheme efficiently provides the confidentiality of both program
and data of the delegator in the delegator-worker model of
outsourced computation against semi-honest workers.
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he delegator-worker model is suitable for cloud
T computing, where the device of the user (i.e. , the
delegator) has limited computing resources, and the user
outsources his/her program and data to the cloud servers
(i.e., the workers) , which usually have excellent com-
puting resources. When the privacy of data is very impor-
tant, fully homomorphic encryption ( FHE) schemes'' ™’
are the best cryptographic candidates, which enable the
workers to operate the ciphertext given by the delegator
without the private key and decryption process. One of
the drawbacks of FHE schemes is that they only support
the computation model of the circuit or the Boolean func-
tion, which is less flexible than the common Turing-ma-
chine-based computation model. As early as 1979, Pip-
penger et al. **) showed how to encode a Turing machine
(TM) into a circuit. However, the size of the encoded
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circuit is O(NlogN) , which is dependent on the worst
runtime N of the original Turing machine.

Recently, Gentry et al. ' proposed a new primitive
model called the garbled random access machine
(GRAM) , which takes on the similar idea of the garbled
circuit' but it is designed for random access machines.
However, the GRAM needs to prepare as many garbled
transition functions as runtime steps during the initializa-
tion by the delegator, which is still a large cost.

In this paper, we propose a reusable FHE-based
scheme to describe and execute the Turing machine,
where the size of the description is only dependent on the
size of the transition function, and the whole work for the
delegator is to encrypt some binary matrices bit-by-bit.

1 Preliminary

We use A to denote the security parameter throughout,
and use the negligible notation f( A ) <negl(A) to show a
function f(A) =O(A ™) for every constant ¢ > 0.

We employ the fully homomorphic encryption scheme
as the building block for our scheme, which usually con-
sists of four algorithms KeyGen ( A ), Enc ( pk, m),
Dec(sk,[[m]]) and Eval (pk,f, [[m,]],[[m ]],
-+-), where the plaintext message space belongs to {0,1}
and the abbreviation [ [ m] ] denotes the ciphertext of the
corresponding plaintext m. The correctness of such a
scheme guarantees that Dec ( sk, Eval (pk,f, [[m,]],
(Lm]],)) =f(m,,m,,--+), where f can be the mod-
2 addition ( denoted as @ ), the mod-2 multiplication
(denoted as ®) or any other expressions based on these
two operations. Without loss of generality, we assume
that the FHE scheme is semantically secure, which, for
any polynomial-time algorithm A, satisfies

| Pr[A(Enc(pk,0)) =1] —Pr[A(Enc(pk,1)) =1] | <negl(A)

In this paper, we employ the FHE primitives as black-
boxes and do not care about the implementation details.
For simplicity, when we use @© and @ between cipher-
texts, we imply the calling to Eval ( - ). The notation
[[x]] =[[y]] denotes the relationship Dec ( sk,
[[x]]) =Dec(sk,[[y]]), as that in almost all FHE
schemes, the decryption is perfect ( which means that no
error will occur in decryption). The notations [ [m ] ] or
their [ [M] ] for a binary vector m or a binary matrix M
are their shortcuts for the encrypted vector or matrix of
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each element.
For a binary string i € {0, 1}", we have two represen-
tations: 7 itself as an integer satisfies i <2" and the vector

| as the binary form for further encryp-

n-1

, i, € 10,1} satisfy Y 2'i; =
=0

i= g, ip, e

s n-1

tion, where i, i,

2 Encryptable Turing Machine

For simplicity, we formalize a one-tape bound Turing
machine as a 4-tuple M = (Q,I",8,q,), where QC {0
1}"is a set of states; I"C {0,1}" is a set of symbols; §:
QO xI'»Q x I' x {Left, Right} is the transition function,
which takes the current state ¢g_, ., and current symbol of
the tape head &, as input, outputs the next state q,,,,,
the symbol to write by the head & and the moving di-

rection of the head (L represents one step left and R re-

output

presents one step right) , and it is usually represented as a
table, of which each row has the form.

|| qnexl || houlpul H L/R

qcurrenl ‘ | cul Tent

where g, € Q is the initial state.

There may be some other configurations of a Turing
machine in standard textbooks such as the blank symbol b
e I', input symbol set SCI'\{b| and the final state set
FC Q. We omit them for the following reasons: b and 3
can be directly taken into accounts when § is designed,
and F cannot be tested in a private outsourced scenario
since it will leak the runtime of different inputs.

The input (and output) of such a Turing machine is a
bound tape which consists of n cells. Each cell contains a
w-bit binary string representing one symbol, and it is as-
sociated with an address of the length /= | log,n | , by
which we can locate where the head is. Note that we do
not offer an unbound tape since algorithms usually have
boundaries of space.

A honest-but-curious (or semi-honest) worker always
follows the algorithms that the delegator gives to him, but
he also tries to learn something from the given data. Ob-
viously, if we encrypt every part of a Turing machine as
well as its tape using a fully homomorphic encryption
the worker will learn nothing due to the semantic
security of FHE. It is not trivial to build an executable
Turing machine based on only mod-2 additions and mod-2
multiplications,
crypt such a machine,
the states, the symbols,
with addresses.

scheme,

so we give the details about how to en-
including the transition function,
the directions as well as the tape

2.1 Simulation of the tape

The tape itself can be viewed as an n x w matrix T,
which can be encrypted directly as [ [ T] ].
also need to hide the moves of the head, which is simula-
ted as the changes of a head position variable a e {01}’
(Recall that [ = | log,n | ). Obviously, a should be

However, we

encrypted as [ [a] ] in the worker’s server, so we need
an algorithm to read a cell of [[T]], given [[a]].
This is the task of a private information retrieval protocol.
For the context of FHE, we refer readers to the details in
Ref. [7]. Algorithm HeadRead is inspired by the algo-
rithms in Ref. [ 7] with some modifications for our sce-
nario, as shown in Algorithm 1.

Algorithm 1 HeadRead

Input: [[T]]=1{[[r,;]]} e l{[[OJ],[LTT]}"™,
[[a]]=1{[la]]}le %[[ 11,0001
Output: [[R]]=1{[[A]]} e {[[O]],[[1]]}"

1 forb:Oton—ldo

Encrypt b to yield [[b]] = ([[b,]], -,
J1D) etlfol1, 111t

[[d]] «<®,([[a]11®[[b]]®[[1]])

end

2
[[b,.

[[h]] —@®i, ([
end
return [ [h]]

In short, lines 1-4 calculate [ [d,] ] for all the n cells,
which satisfy [ [d,]]=[[1]] and (ld.]l=[[0]].
These [ [d,]] can be viewed as selectors of cells. Lines
T] ] be checked by [[d,]] so
t,; 1] leavesin [[h;]].
larly, there is a HeadWrite algorithm to write the symbol

3

4

5 forj=0tow-1do
6 d11®[[1,;]1])
7

8

5-7 make each row of [ [

that only the value of [ [ Simi-

[[R]] in [[T]] at the location [ [a]] as shown in al-
gorithm 2.

Algorithm 2 HeadWrite

Input: [[T]], [[al]l, [[R]] =C([[A]], -,
(LA, 1) etllO]],[[1]]F"

Output: [[T]].

1 forb=0ton-1do

2 Encrypt b to yield [[b]] = ([[b,]1], -+,
[[b,_,]1)elll0]],[[1]]}

3 [[d]] «®([[a]]@®[[b]]®L[1]])
4 end

5 fori=0ton-1do

6 [[d]]<[[d]]®[[1]]

7 forj=0tow-1 do

8 ([, ]—([[d 1] [t,;]])®([[d]]®
(La]])

9 end

10 end

11 return [[T] ]

As we can see, lines 14 are identical to those of Head-
Read and share the same functionality. Lines 5-10 make
use of [ [d,]] and its negation [ [d,]] to implement the
following functionality: When the cell is selected, the
current data is replaced with the input [ [ 4] ], and other-
wise the original data keep unchanged.

Finally, we consider the move of the tape head. We
assume that the leftmost cell of the tape has the address O
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and the rightmost cell of the tape has the address n — 1.
Then we encode the action “one step left” as [ [1]] and
the action “one step right” as [[0]], and then use the
HeadMove algorithm as follows.

Algorithm 3 HeadMove

Input: The current address [ [a]] and the direction
[[dir]].

Output; The next address [ [a']].

U [[d_ ]]«[[1]]

2 fori=0to /-2 do

3 [[d,]]«[[dir]]

4 end

5 [ldl]=C[ld, 1], [[d,_1])

6 [[a']]<FullAdder([[a]], [[d]])
7

return [[a'] ]

Lines 14 make d =2' — 1 when dir =1 (one step left)
and d =1 when dir =0 (one step right), which are the
two’s complements of F1 of [-bit integers exactly. Then
we call the standard Boolean function of [-bit full adder to
implement the decrement and increment of the address of
the head.

2.2 Simulation of the transition function

The transition function is the kernel of the Turing ma-
chine. Applying the encoding of directions, each row of
the table of the transition function § becomes a pure (2k
+2w + 1)-bit binary string. Assuming that there are m
rows in the table, we use an m x (2k +2w +1) matrix F
to store it, which can be encrypted directly as [ [ F]].
Given the current state [ [ ¢ ] ] and current symbol read by
the head [ [h]], we can use the following MoveStep al-
gorithm to obtain the next state [ [ ¢'] ], the output of the
head [ [£'] ] and the direction of the move of the head
[[dir]].

Algorithm 4 MoveStep

Input: [[F]] ={[[f,]]t, [[ql]eil[0]],
CO1I0te, [r]J et [L0]], 001001

Output: [[¢']] e {[[0]],[[1]]}" [[A']] e
terod 0ol [hdicdJet[[O]],[L1]]F.

[[6]] < (LLgll, -, [lq 1], [LA 1T, -,
[Lh, 1)

fori=0tom-1 do

[[d]]—@;5 " ([[f11@l[b]]@[[1]])
end

for j =0 to k+w do

[[e]] —@® ([[d11®LLfsni] D)

end

(Lg']] «— (Lle ]y [le D)5 LLAT]
(LLed ]y [lep o I D)5 [ldir] J«=[ e, 1]

return [ [¢"]], [[A']], [[dir]]

The whole process is similar to the HeadRead algo-
rithm, except for that we use the first k + w columns ( the
states and symbols; i. e. the inputs of §) of [[F]] as
addresses for matching instead of the natural row number,

and use the last k + w + 1 columns of [ [ F] ] as contents.
2.3 Process of evaluation

Now a Turing machine and its tape can be described as
[[T]], [[F]] as well as the encrypted initial state
[[g,]].
encrypted Turing machine, we cannot let the worker
check whether the machine halts. Instead, we specify a
worst-case runtime N. Putting all the things together, we
obtain the TMEval algorithm.

Algorithm 5 TMEval

Input: [[T]], [[F]], [[q,]], N.

Output; [ [T]] and the final state [ [q]].

1 [[ql]«[[q,]]/ = the state register =/

2 [[all«[[b,]]/ = the head position register * /

3 fori=1toNdo

4 [[h]]«HeadRead ([[T]], [[a]]) /* the
current input symbol * /

5 [[qll, [[h]], [[dir]] < MoveStep([[F]],

[Lq]], [[R]])
6 HeadWrite([[T]], [[a]], [[R]])

7 [la]]«HeadMove([[a]], [[dir]])

8 end

9 retwrn [[T]], [[q]]

Lines 4-7 represent a complete cycle of a single
MoveStep of the evaluation of the Turing machine. If the
delegator only wants a few bits of the tape, he can use
HeadRead as a private information retrieval algorithm to
achieve this.

As we mentioned before, while executing an

3  Outsourced Computation Based on the En-
cryptable Turing Machine

3.1 Definition
We follow the definition of the formal description of

outsourced computation schemes in Ref. [ 8 ].
sourced computation consists of the following three algo-

An out-

rithms .

1) FuncKeyGen( F,A)— (PK,SK) encodes the pro-
gram F as the public key PK and outputs a secret key SK
kept in the hands of the delegator. A is the security pa-
rameter for verifiability.

2) ProbGeng (x) —(o,,7,) encrypts the function in-
put x as a public value o, and a private value 7.

3) Compute, (o, ) —0, computes the encrypted result
of y=F(x), using PK and o,.

The privacy of outsourced computation schemes is de-
fined by the experiment Exp " ( F,A) as shown in algo-
rithm 6, where the oracle PubProbGeng, ( + ) calls Prob-
Geng ( - ) to generate (o,,7,) and returns the public
part o-r[gi.

Algorithm 6 Exp " (F,\)

Input; Adversary A, function F, security parameter A.

Output; The result of experiement; “succ” or “fail”.



270

Fang Hao and Hu Aiqun

F—A( +); (PK,SK) « FuncKeyGen(F,A)

(xo X, ) A PubProbGen( ) (PK)

(oy,7,)<ProbGeng, (x,); (o,,7,)<ProbGeng (x,)

by 10,1} ; =A™ (PK x, ,x, ,0,)

if b = b then output “succ”

else output “fail”

end

Definition 1 A outsourced computation scheme is
said to be private for a function F, if for any probabilistic
polynomial time adversary A,

Priv

Pr[exp,” (F,A) outputs succ ] —% <negl(A)

3.2 Our scheme

Now we present our outsourced computation scheme
based on the encryptable Turing machine (ETM) .

1) FuncKeyGen((F,q,,N),A)—(PK,SK) . (pk,
sk)«KeyGen (1), PK«(pk,[[F]],[[q,]],N),SK
«—(pk,sk).

2) ProbGeng (X)—(0y,7y): oy [X]], 7,<X.

3) Compute,, (oy) —>0y: oy« TMEval ([[ X]],
[[F]],[[q,]].N).

Theorem 1 If there exists a semantically-secure fully
homomorphic encryption ( KeyGen, Enc, Dec, Eval),
then our outsourced computation scheme is private for
all F.

Proof Assume that there is an adversary A satisfying

Advi™ = | Pr[exp,” (F,\) outputs succ] —

N‘»—‘

where £ is non-negligible. Then, we construct an adver-
sary A’ for breaking the semantic security experiment of
the FHE scheme with the challenger C' as follows:

A’ first receives PK’ from C’, and then sends m, =0
and m, =1 to C'. C' picks up a b' and sends [ [ m} ] ]
back. Now A’ interacts with A as the challenger. He/She
answers the PubProbGeng, ( + ) oracle and FuncKeyGen
using pk =pk’ and a random string as sk. Once A sends
two plaintext tapes X,, X, to A’, he/she first calculates
oy and oy, as normal, then replaces all those in o, with
[[m',]]. A" always sends oy, to A.

With the probability 1/2, Dec( oy, ) = X,, and in this
case, A will succeed in g. With the rest probability 1/2,
Dec( oy, ) is 0, and in this case, A may not have the ad-
vantages leading to success, and in the worst case, A will
succeed in negl(A).

Let A’ output what A outputs, then in the worst case,
we have

Pr[A’ wins] =Pr[h=b] =
Pr[exp™ (F,A) outputs succ | b=1] +
Pr[ Guess | b=0] =

1 1 1 1 1
7' ( ) +8) +7-7_?+negl(/\)

which leads to a contradiction of the semantic security of
the FHE scheme. Therefore, no such A exists.

4 Comparisons

There are several general secure multi-party computa-
tion schemes that can efficiently compute arbitrary func-
tions without leaking private data to other parties, such as
Yao’s classical garbled circuit scheme'®’, the recent dis-
tributed oblivious RAM scheme'”’
schemes. However, all these schemes require the client

and other similar

(in our context, the delegator) to interactively communi-
cate with the server(s) (in our context, the worker(s))
during the computation process, which is unacceptable in
the outsourced computation scenario, in which the dele-
gator merely sends the data to the worker and fetches the
result from the worker later. To the best of our knowl-
edge, this non-interactive general secure computation can
be achieved by only the fully homomorphic encryption
schemes.

So, we mainly compare our implementation of encrypt-
able Turing machines to the 1970s’ oblivious Turing ma-
chine (OTM) , as the latter is still widely used in recent
FHE-based studies """,
proposal, the description of Turing machine F is not de-
pendent on the worst-case runtime N. We summarize the
comparisons in Tab. 1.

As we claimed above, in our

Tab. 1
tion schemes

Comparisons of different Turing-equivalent computa-

Scheme Worst-case runtime Encoded size
Original TM N o(1)
TM-to-circuit schemes*’ O(N) O(NlogN)
Oblivious TM*-107!1] O(NlogN) o(1)
GRAMI® O(N) O(N)
Our scheme O(N) o(l)

5 Conclusion

We propose a scheme that enables semi-honest servers
to execute Turing-equivalent computations on encrypted
data, where the encoding of the Turing machine is inde-
pendent of its inputs and running time. Future work will
be to model the encryptable Turing machine against mali-
cious adversaries, who may return incorrect result to the
user, and the user must have some efficient method to
discover this malicious behavior. It is always possible,
since there are standard compilers'”' | to compile any se-
cure multi-party computation protocol against a semi-hon-
est adversary to a more secure protocol against malicious
adversaries. However, all these compilers lower the effi-
ciency of the secure multi-party computation protocol
enormously. We plan in the future to implement a
scheme against malicious adversaries by utilizing the spe-
cial structure of the encryptable Turing machine and thus,
thereby, achieve a more accurate result.
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