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Analysis of plane strain bending of a strain hardening curved beam
based on unified yield criterion
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Abstract: The analysis of plane strain elastic-plastic bending of
a linear strain hardening curved beam with a narrow
rectangular cross section subjected to couples at its end is
conducted based on a unified yield criterion. The solutions for
the mechanical properties of plane strain bending are derived,
which are adapted for various kinds of non-strength differential
materials and can be degenerated to those based on the Tresca,
von Mises, and twin-shear yield criteria. The dependences of
the two critical bending moments, the radii of the interfaces
between the elastic and plastic regions and the radial
displacements of the points at the symmetrical plane on
different yield criteria and Poisson’s ratios are discussed. The
results show that the influences of different yield criteria and
Poisson’s ratio on the two critical bending moments, the radii
of the interfaces between the elastic and plastic regions and the
radial displacements of the points at the symmetrical plane of
the curved beam are significant.
obtained by experiments,
corresponding solution for the materials of interest are then
determined.

Once the value of b is
the yield criterion and the
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t is known that curved beams are widely applied in en-
I gineering practice,

civil engineering, and mechanical engineering, etc. Con-
sequently, the investigation of mechanical properties of a
curved beam is of great necessity to make full use of the
load-carrying capacity of the materials and ensure the
safety of the curved beam in practical applications. There
exist a large number of studies on elastic-plastic bending
of a curved beam. A comprehensive research on the
curved beam which is in the state of being completely

such as aerospace engineering,

elastic was presented by Timoshenko and Goodier!". Un-
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der the plane strain assumption, Shaffer and House™™
discussed the mechanical properties for pure bending of
the wide curved bar. The theory for plane strain bending
for rigid-perfectly plastic and work hardening materials was
formulated by Hill"" and Dadras et al. ', respectively. In
Ref. [7], the solutions of plane strain elasto-plastic pure
bending of a linear strain-hardening curved beam were de-
rived. A concise analytical treatment of elastic-plastic ben-
ding of a strain hardening curved beam was developed by
Eraslan and Arslan™, and their theory was further extend-
ed to nonlinearly hardening materials”™” .

It is noted that the studies mentioned above were devel-
oped for one or several specific materials and thus have
their own limitations in application. For this reason, this
paper conducts the plane strain bending analysis of curved
beams on the basis of the unified yield criterion
(UYC) "™ The solutions for the mechanical properties
of plane strain bending of the curved beam consisting of
non-SD (strength difference in tension and compression)
materials such that many ductile metallic materials are de-
rived, which can be adapted for a wide variety of materi-
als.

1 Statement of the Problem and Basic Equations

In this paper, a wide curved beam with a narrow rec-
tangular cross section is taken into consideration. The
curved beam is subjected to a couple of moments at its
end sections. The geometry of the beam, the coordinate
system and the loading of the beam are shown in Fig. 1.
It is assumed that the beam is fixed at point r = a, and 6 =
0 during the deformation. In the process of elasto-plastic
deformation, the plastic deformation begins at r =a,, and
with the increase in the couple moment, the plastic region

r

G )

Fig.1 Geometry of the curved beam



340 Fu Jun, Pang Miao, Song Guangyuan, Zhang Yongqiang, and Yang Bo

expands into the beam. When the moment approaches a
critical value, another plastic region appears at r =a,. At
this time, the beam consists of three parts: an inner plas-
tic region, a middle elastic region, and an outer plastic
region. With the increase in the couple moment, the two
plastic regions will go on expanding.

When the curved beam is purely under bending, the
stresses and strains are the only function of r, and the
shear stress 7, = 0. Thus, the strain-displacement rela-
tionships can be expressed as

u
=— 1
&=, (1)
u 1 ogv 1 ou v v
= — = = — 7:0 2
& r+r69’y’“ r 00 r+8r (2)

where u and v denote the radial and tangential components
of displacement; r and # denote the radial and tangential
coordinates; &, and g, denote the radial and tangential
normal strain components; and v, is the shear strain.
Due to 7, =0, the equation of equilibrium can be ob-
tained by

o, =%( ro) (3)

where o, and o, are the radial and tangential normal stress
components, respectively. In addition, the compatibility
relationship is

1 d/ ,de,\ de,
— ) == 4
r dr( dr) dr 0 4)
and the equations of the generalized Hook’s law are
1
e, =g, +E[0, -v(o, +0,)]
(5)
g,= &) +f[0’e -v(o, +0,)]

where ¢ and £/ denotes the radial and tangential plastic
strain components; E is the modulus of elasticity; and v
represents the Poisson’s ratio which satisfies 0 < v<0.5.
Eraslan and Arslan' derived the radial and tangential
components of displacement, which are expressed as

v(r, 8) =Cro + Asinf, u(r,0) =re,— Cr —Acosf (6)

where C and A are integration constants, and
d
a(rag) -g,=C (7)

It follows from Egs. (3), (5) and (7) that"®’

2d20',+3 do, do, Bl o _ o de’, _EC
"R ar TV ar &g )T

(8)

This is the differential equation that governs the curved

beam’s partially plastic response under pure bending, and
it is applicable to the case of plane strain.

2 Elastic Stage

For the case of plane strain and in the stage of purely

. . 8
elastic deformation, we have™

y D, g ECor B o EC(1+lnr)
r_r2 2 2(1_v2)’ 0= 7 2 2(1—1}2)
9
1 (1+v)B
_E[—7‘+(1+v)(1—2u)32r]—
Cl1 v (1 -2v)Inr]r

—Acosf (10)

2(1 -v)

where the four integration constants B,, B,, C, and A
can be obtained by

B, = _%Maf 2n &2
1
B, =4WM(a§1na2 -d}lna,) (11)
Cz%(a?—ai)(l—vz)
1 (1+wB,
A_E[ . +(1+v)(l—2v)alB2]—
Cll —v—(1-2v)Ina, 14, )

2(1 -v)

2
a .
where N = (a’ —a2)’ —-4d’a; ( In —2) and M is the couple
al
moment per unit width of the rectangular cross section.

3 The First Plastic Region

In the plastic region, the stress state is o, >, >0, .

Ast,=0, o, o, and o, are three principal stresses.
Thus, we have o, =0, 0, =0,, and o, = o;. For the

UYC, its principal stress is expressed as'''™""

1
o, -7 (bo, +o;) =0,

1+b (13a)

(13b)

11?(0'] +bo,) ~0; =0,
where o, o, and ¢, represent the principal stresses, sat-
isfying o, =0, =0, and ¢ is the material’s tensile yield
stress. It should be noted that parameter b plays an im-
portant role in the UYC. It reflects the influence of the
intermediate principal stress on the failure of a material.
On the other hand, it builds a bridge among different
yield criteria. It is the parameter that distinguishes one
criterion from another. Hence, the UYC is not a single
yield criterion but a theoretical system including a series
of regular yield criteria, and it can be applied to various
types of non-SD materials. With different choices of pa-
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rameter b, the UYC can be simplified to the Tresca yield
criterion (b = 0), the linear approximations of Mises

1
yield criterion (b = 17), the twin-shear yield criterion

+/3
(TS) (b =1)" and a series of new yield criteria. In
practice, when basic material parameters are obtained by
experiments, the value of b can be determined by

, 261
20

where ¢ stands for the ratio of the shear yield stress to the
tensile yield stress, i.e. ¢ =7/0,, and 0<b=<1 for

(14)

convex yield criteria.
For the plane strain situation, we have

(15)

o,=v(o,+0,)
Thus, the UYC takes the form of Eq. (13a). By com-
bining Eq. (13a) with Eq. (15), we have

P 0

1407

(16)

P=1+b-vb, Q=1+vb (17)

For a linearly hardening material, the relationship be-
tween the yield stress and equivalent plastic strain can be
expressed as

o, =0,(1 +negy) (18)

where o is the initial yield stress; 7 represents the mate-
rial hardening parameter; and g, the equivalent plastic
strain.
The associated flow rule of the UYC gives
v _ 0

— = P
&, = &

’ P (19)

and from the equivalence of the increment of plastic
work, we have
(20)

— RoP
&rq = Re,

with R = (1 + b)/P. The combination of Egs. (16),

(18), (19) and (20) gives the tangential plastic
strain component
L= a(Po,~00) — (21
ST M +byoR 7027 TR

Substituting Eqgs. (3), (15), (19) and (21) into Eq.
(8), the differential equation for the first plastic region
can be obtained as

d’o do, Y(1-2v) EC Y

2 - " r AL \LTLU) = L
r 5 +3r o Fx 1+ O x tx (22)

12 P _P+0
X=1-v +(1+b)HR’ Y= HPR (23)

in which H is a normalized hardening parameter expressed
as H=no,/E.
The solution of Eq. (22) can be given by

o iw o ew (Lxb)EC  (1+b)ay
o =B B o T (2 Y
Y (1-20)b
R (25)

Accordingly, the tangential stress, plastic strains, and
radial displacement can be obtained as

o,= -WByr "+ WB, "+

1+b 1+b
Y(1-20)b = T (1 =20)67° (26)
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where B, and B, are integration constants.
For the case of b =0, it can be obtained from Egs.
(24) to (28) that

—&+B +EClnr+1nir
O-r_r2 4 25 SHO-O
(29)
_ —§+B +EC(l + 1nr) +(1 + 1nr)
Ty = r2 4 2S SH (2
1 2B, 1-SH 1 » »
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7[ SH ]‘
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1
here S=1-v" +—.
whnere U+H

It is found from Egs. (29) to (31) that the expressions
for o, o, &, &), and u are identical to those obtained
by Eraslan and Arslan'® .

4 The Second Plastic Region

In the plastic region, the stress state is o, > o, >0, .

Thus, the UYC takes the form of Eq. (13a), and
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we have

(32)

Based on the associated flow rule of the UYC and the
equivalence of the increment of plastic work, we can ob-
tain

> Q

— = P — p
£y= — & o =Re

P r (33)

The relationship between the yield stress and equivalent
plastic strain for linear hardening material is

o, =0(1 +neg,) (34)

Thus, the radial plastic strain component becomes

» 1

T eboR )

1
& (Po,-Qo,) - niR
The differential equation for the second plastic region
can be obtained as

2
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The solution of Eq. (36) is
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where
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As a consequence, it can be found that
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where B and B, are integration constants.
For the case of b =0, it can be obtained from Egs.

(38) to (42) that
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It is found from Egs. (43) to (45) that the expressions
for o,, o,, &', &), and u are the same as those derived

by Eraslan and Arslan'®'.

5 Boundary Conditions and Elastic-Plastic De-
formation

5.1 The first stage of elastic-plastic deformation

In this stage, the curved beam consists of two regions,
a plastic region (a, <r<r,) and an elastic region (r, <r
<a,), where r, is the border radius of the plastic and
elastic regions. There are seven unknowns which are A,
B,, B,, B,, B,, C, and r, in the expressions. In order to
determine these unknowns, seven unrelated boundary
conditions are available, and they are listed as follows:

u"' (a,,0) =0 (46)

o' (a,) =0 (47)

o' (r) =oi(r) (48)

u'' (r, ) =u‘(r,, 0) (49)
U,=P02(rl)1 ;chrf(rl) (50)
of(a,) =0 (51)
f:aglrdwffa;rdr --M (52)

where superscript p [ and e represent the first plastic re-
gion and the elastic region, respectively, and a function
defined as f(x) =x(Inx +1/2)/2 is used to make the ex-
pression more concise.
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5.2 The second stage of plastic-elastic deformation

In this stage, the curved beam consists of three re-
gions, a plastic region (a, <r<r,), an elastic region (r,
<r<r,) and another plastic region (r, <r<a,), where
r, and r, is the border radius of the plastic and elastic re-
gions. There are ten unknowns in the expressions, and
they are A, B,, B,, B;, B,, By, B, C, r;, and r,. In
order to determine these unknowns, we need to add five
conditions on the basis of section 5.1, and they are listed
as follows:

_Pof(rz) - Qo'Z(rz)

T 1+b (53)

o(r,) =o' (r,) (54)

u‘(r,, 0) =u""(r2,0) (55)

o™ (a,) =0 (56)
f:aglrdr+ffa;rdr+fag“rdr =—M (57

where superscript p [I represents the second plastic re-
gion. By using Egs. (46) to (50) and (53) to (57), the
ten unknowns can be obtained.

With these unknowns determined, the stress, strain and
displacement of the beam can be obtained from the corre-
sponding expressions.

6 Numerical Results and Analysis

In this section, a curved beam of a,/a, =1.3 is con-
sidered. The dimensionless form and normalized variables
are used for the presentation of the results and they are

defined as
_ r o _ ag;
F=—, 0,=— i=r,0
1 gy
. uE - M
u= , M= 5
0o, Tya,

The values of material parameters used in the following
analysis are: E =200 GPa, o, =250 GPa, H=0.2.

In the process of elastic-plastic deformation of the
curved beam, there are two critical states. One is when
the plastic deformation commences at the inner surface (r
=a,) and the other is when the plastic deformation com-
mences at the outer surface (7 = a,). Obviously, there
are two elasto-plastic critical moments M, and M repre-
senting these two critical states, and 1\7[ is also the elastic
limit load. When M <M |, the beam is completely in an
elastic state. With the increase in load, when M ;< M<
M, the beam consists of an inner plastic region and an
outer elastic region. Finally, when M > M, the beam
consists of an inner plastic region, a middle elastic re-
gion, and an outer plastic region. It is assumed that 7, de-

notes the radius of the boundary between the inner plastic
and middle elastic regions, and 7, represents the radius of
the boundary between the middle elastic and outer plastic
regions.

Figs. 2 and 3 show the variation of the two critical
loads M, and M ; with parameter b and Poisson’s ratio v.
It is revealed from these two figures that parameter b has
significant influences on the two critical loads M, and
M. The values of M, and M increase with the increase
in parameter b. The significant dependence of the two
critical loads on parameter b implies the considerable in-
fluences of different yield criteria on the two critical loads
as b is a parameter determining the specific expression of
the yield criterion. It is seen that the TS-based predictions
of the two critical loads provide upper bounds to the criti-
cal loads due to the full consideration of the influence of
the intermediate principal stress (b =1), while the Tres-
ca-based predictions give lower bounds owing to the igno-
rance of the effect of the intermediate principal stress (b
=0). Consequently, the selection of parameter b be-
comes much more important. In practice, when basic ma-
terial parameters o, and 7_ are obtained by experiments,
the value of b can be determined by Eq. (14). Whenever
parameter b is obtained,
curved beam consisting of this sort of material can be ob-
tained.

In addition, it is observed from Figs.2 and 3 that the two

the two critical loads for a
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M, /1073
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b
Fig.2 Effect of parameter b on the critical load M with vari-

ous Poisson’s ratios

1 1
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9.0

1
0 0.10.

Fig.3 Effect of parameter b on the critical load M with vari-

ous Poisson’s ratios
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critical loads M| and M are dependent upon Poisson’s
ratio v as 0 < b<1, whereas they have nothing to do with
Poisson’s ratio when b =0. When 0 < b<1, the critical
load M, becomes larger with the increase of the value of
Poisson’s ratio v, whereas the critical load 1\7]1 becomes
smaller with the increase of the value of Poisson’s ratio v.
The extent of influence of Poisson’s ratio on the two criti-
cal loads becomes more significant with the increase in
the value of parameter b.

As is known, when the subjected bending moment is
larger than the critical load M, the curved beam consists
of an inner plastic region, an elastic region and an outer
plastic region. Figs. 4 and 5 show the variations of radii
r, and r, with parameters b and v. As can be seen, the ra-
dii 7, and r, are dependent upon parameters b and v. It is
observed from Fig. 4 that radius 7, becomes larger with
the increase of Poisson’s ratio v when the value of param-
eter b is very small. However, with the further increase
of parameter b, radius r, becomes smaller with the in-
crease of Poisson’s ratio v.

L1l
1. 10 by
1.09

- 1.08

1.05

1 1 1 1 1 1 1 1 ]
0 0.10.2 0.30.40.50.60.70.80.91.0

b

Fig. 4
0.016

Variations of 7, with parameter b for the case of M =

.28
27
.26
.25
.24
.23
.22
.21
.20
9
.18 B

= = R e b e e e e e

17 1 1 1 1 1 1 1 1 |
0 0.10.2 0.30.40.50.60.70.80.91.0

b

Fig.5 Variations of 7, with parameter b for the case of M =
0.016

From Fig. 5, it is found that radius 7, decreases with the
increase in Poisson’s ratio v. Additionally, it is seen from
Figs.4 and 5 that radius 7, diminishes with the augmenta-
tion of b, whereas radius 7, becomes larger with increasing
b. Thus, it can be concluded that the influences of differ-
ent yield criteria and Poisson’s ratios cannot be overlooked

in the predictions of the values of radii 7, and 7,.

Figs. 6 and 7 show the influences of parameter b and
Poisson’s ratio v on the radial displacements for those
points at the plane of symmetry of the curved beam. As
can be seen, the radial displacements are greatly dependent
upon parameter b and Poisson’s ratio v. For instance, it
can be found from Fig. 8 that the radial displacement
u(1.15a,,0) at the plane of symmetry is negative. The ab-
solute value of the radial displacement u(1.154,,0) dimin-
ishes with the augmentation of the value of parameter b,
but it becomes larger with the increase of Poisson’s ratio
v. The great dependences of the radial displacements on
parameter b imply the significant effects of different yield
criteria on the radial displacements.
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