Monoidal Hom-Hopf algebra on Hom-twisted product

You Miman Wang Shuanhong

(Department of Mathematics, Southeast University, Nanjing 211189, China)

Abstract: Let (H, α) be a monoidal Hom-bialgebra and (B, β) be a left (H, α) -Hom-comodule coalgebra. The new monoidal Hom-algebra $B_{\times}^{\#}H$ is constructed with a Hom-twisted product $B_{\sigma}[H]$ and a $B \times H$ Hom-smash coproduct. Moreover, a sufficient and necessary condition for $B^{\#}H$ to be a monoidal Hom-bialgebra is given. In addition, let (H, α) be a Hom- σ -Hopf algebra with Hom- σ -antipode S_H , and a sufficient condition for this new monoidal Hom-bialgebra $B_{\times}^{\#}H$ with the antipode S defined by $S(b \times h) = (1_B \times S_H(\alpha^{-1}(b_{(-1)})))$. $(S_B(b_{(0)}) \times 1_H)$ to be a monoidal Hom-Hopf algebra is derived.

Key words: monoidal Hom-Hopf algebra; Hom-twisted product; Hom-smash coproduct

DOI: 10. 3969/j. issn. 1003 – 7985. 2016. 03. 022

→ aenepeel et al. [1] described Hom-structures from the point of view of monoidal categories and introduced monoidal Hom-algebras, monoidal Hom-coalgebras, monoidal Hom-Hopf algebras, etc. In 2013, Chen et al. [2] introduced integrals for monoidal Hom-Hopf algebras and Hom-smash products. Then, Liu et al. [3] constructed a Hom-smash coproduct, which generalized the classical smash coproduct and illustrated the category of Hom-Yetter-Drinfeld modules and proved that the category is a braided monoidal category. In Ref. [4], the authors constructed a Hom-crossed product, which generalizes the classical crossed product introduced in Refs. [5 -7]. Can we give a new monoidal Hom-algebra construction of the special Hom-crossed product and the Homsmash coproduct?

In this paper, we give a positive answer to the question above. We recall the basic definitions concerning monoidal Hom-Hopf algebras, and we find a sufficient and necessary condition for $B_{\star}^{*}H$, with the Hom-twisted product $B_{\sigma}[H]$ and the Hom-smash coproduct $B \times H$ for a comodule coalgebra (B,β) over (H,α) , to form a monoidal Hom-bialgebra and derive a sufficient condition for

Received 2014-06-11.

Biographies: You Miman (1984—), female, doctor; Wang Shuanhong (corresponding author), male, doctor, professor, shuanhwang@seu. edu. cn.

Foundation items: The National Natural Science Foundation of China (No. 11371088, 10871042, 11571173), the Fundamental Research Funds for the Central Universities (No. KYLX15_0105).

Citation: You Miman, Wang Shuanhong. Monoidal Hom-Hopf algebra on Hom-twisted product [J]. Journal of Southeast University (English Edition), 2016, 32 (3); 391 - 394. DOI; 10. 3969/j. issn. 1003 - 7985. 2016.03.022.

this new bialgebra to be a monoidal Hom-Hopf algebra.

Preliminaries

Throughout this paper, we refer the readers to the books of Sweedler^[8] for the relevant concepts on the general theory of Hopf algebras.

Let $\mathcal{M}_k = (\mathcal{M}_k, \otimes, k, a, l, r)$ denote the usual monoidal category of k-vector space and linear maps between them. Recall from Ref. [1] that there is the Hom-category $\widetilde{H}(\mathcal{M}_k) = (\mathcal{H}(\mathcal{M}_k), (k, id), \tilde{a}, \tilde{l}, \tilde{r})$, a new monoidal category, associated with \mathcal{M}_{ι} as follows:

- 1) The objects of $\widetilde{H}(\mathcal{M}_{\nu})$ are couples (M, μ) , where $M \in \mathcal{M}_k$ and $\mu \in \operatorname{Aut}_k(M)$, the set of all k-linear automomorphisms of M;
- 2) The morphism $f: (M, \mu) \rightarrow (N, \nu)$ is the k-linear map $f: M \rightarrow N$ in \mathcal{M}_k satisfying $\nu \circ f = f \circ \mu$ for any two objects $(M, \mu), (N, \nu) \in \widetilde{H}(\mathcal{M}_{\nu});$
- 3) The tensor product is given by $(M, \mu) \otimes (N, \nu) =$ $(M \otimes N, \mu \otimes \nu)$, for any objects $(M, \mu), (N, \nu)$ $\in \widetilde{H}(\mathcal{M}_{\iota})$;
 - 4) The tensor unit is given by (k, id);
- 5) \tilde{a} is given by the formula: $\tilde{a}_{M,N,L} = a_{M,N,L} \circ ((\mu \otimes$ $\operatorname{id}) \otimes \zeta^{-1}$) = $(\mu \otimes (\operatorname{id} \otimes \zeta^{-1})) \circ a_{M,N,L}$, for any objects $(M, \mu), (N, \nu), (L, \zeta) \in \widetilde{H}(\mathcal{M}_{\nu});$
- 6) The left and right unit constraint \tilde{l} and \tilde{r} are given by $\tilde{l}_M = \mu \circ l_M = l_M \circ (id \otimes \mu)$, $\tilde{r}_M = \mu \circ r_M = r_M \circ (\mu \otimes id)$, for all $(M,\mu) \in \widetilde{H}(\mathcal{M}_{\nu})$.

A unital monoidal Hom-assciative algebra is a vector space A together with an element $1_A \in A$ and linear maps $m: A \otimes A \rightarrow A; \ a \otimes b \mapsto ab, \ \alpha \in Aut_k(A)$ such that α $(1_A) = 1_A$, $a1_A = 1_A$ $a = \alpha(a)$, $\alpha(a)(bc) = (ab)\alpha(c)$, $\alpha(ab) = \alpha(a)\alpha(b)$, for all $a, b, c \in A$.

A counital monoidal Hom-coassociative coalgebra (C, γ) is a vector space C together with linear maps $\Delta: C \rightarrow C$ $\otimes C$, $\Delta(c) = c_1 \otimes c$, and $\varepsilon : C \rightarrow k$ such that $\Delta(\gamma(c)) =$ $\gamma(c_1) \otimes \gamma(c_2), \gamma^{-1}(c_1) \otimes \Delta(c_2) = \Delta(c_1) \otimes \gamma^{-1}(c_2),$ $c_1 \varepsilon(c_2) = \gamma^{-1}(c) = c_2 \varepsilon(c_1), \varepsilon(\gamma(c)) = \varepsilon(c), \text{ for all }$ $c \in C$.

A monoidal Hom-bialgebra $H = (H, \alpha, m, \eta, \Delta, \varepsilon)$ in Ref. [1] is a bialgebra in the monoidal category $\widetilde{H}(\mathcal{M}_k)$. This means that (H, α, m, η) is a monoidal Hom-algebra and $(H, \alpha, \Delta, \varepsilon)$ is a monoidal Hom-coalgebra such that Δ and ε are morphisms of algebras; i. e., for any h, $g \in H$, $\Delta(hg) = \Delta(h)\Delta(g)$, $\Delta(1_H) = 1_H \otimes$ 1_H , $\varepsilon(hg) = \varepsilon(h)\varepsilon(g)$, $\varepsilon(1_H) = 1$.

A monoidal Hom-bialgebra (H, α) is called a monoi-

dal Hom-Hopf algebra if there exists a morphism $S: H \rightarrow H$ in $\widetilde{H}(\mathcal{M}_k)$ such that $S* \mathrm{id} = \eta \circ \varepsilon = \mathrm{id} * S$.

Note that a monoidal Hom-Hopf algebra is a Hopf algebra in $\widetilde{H}(\mathcal{M}_k)$. Furthermore, the antipode of monoidal Hom-Hopf algebras has almost all of the properties of antipode of Hopf algebras such as S(hg) = S(g)S(h), $S(1_H) = 1_H$, $\Delta(S(h)) = S(h_2) \otimes S(h_1)$, $\varepsilon \circ S = \varepsilon$.

S is a monoidal Hom-anti-(co) algebra homomorphism. Since α is bijective and commutes with antipode S, we can also have the inverse α^{-1} commuting with S, that is, $S \circ \alpha^{-1} = \alpha^{-1} \circ S$. In the following, we recall the actions and coactions on monoidal Hom-coalgebras.

Now let (C, γ) be a monoidal Hom-coalgebra. A left (C, γ) -Hom-comodule is an object (M, μ) in $\widetilde{H}(\mathcal{M}_k)$ together with a k-linear map $\rho_M \colon M \to M \otimes C$, $\rho_M(m) = m_{(-1)} \otimes m_{(0)}$ such that $\varepsilon (m_{(-1)}) m_{(0)} = \mu^{-1} (m)$, $\Delta_C (m_{(1)}) \otimes \mu^{-1} (m_{(0)}) = \gamma^{-1} (m_{(-1)}) \otimes (m_{(0)(-1)} \otimes m_{(0)(0)})$, $\rho_M(\mu(m)) = \gamma (m_{(-1)}) \otimes \mu (m_{(0)})$, for all $m \in M$.

In Ref. [3], a left (H,α) -Hom-comodule coalgebra (B,β) is a monoidal Hom-coalgebra, with a monoidal Hom-bialgebra (H,α) and a left (H,α) -Hom-comodule (B,β) , obeying the following axioms: for all $b \in B$, $b_{(-1)} \otimes \Delta_B (b_{(0)}) = b_{1(-1)} b_{2(-1)} \otimes b_{1(0)} \otimes b_{2(0)}$, $b_{(-1)} \varepsilon (b_{(0)}) = \varepsilon (b) 1_H$.

Recall from Ref. [3] that there is the Hom-smash coproduct $(B \times H, \beta \times \alpha)$, with a left (H, α) -Hom-comodule (B, β) and the Hom-comultiplication given by $\Delta(b \times h) = (b_1 \times b_{2(-1)} \alpha^{-1}(h_1)) \otimes (\beta(b_{2(0)}) \times h_2)$, for all $b \in B$, $h \in H$.

Recalled from Ref. [4] that the Hom-crossed product $B\#_{\sigma}H$ of B with H is the vector space $B\otimes H$, with a monoidal Hom-Hopf algebra (H,α) and a monoidal Hom-algebra (B,β) . H acts weakly on B and $\sigma: H\otimes H\to B$ is convolution invertible. The multiplication is given by $(a\#h)(b\#k) = a[(h_{11}\beta^{-2}(b))\sigma(h_{12},\alpha^{-1}(k_1))]\#\alpha(h_{2k_2})$, for any $h, k\in H$ and $a, b\in B$.

2 Monoidal Hom-Bialgebra $B_{\times}^{*}H$

If $B\#_{\sigma}H$ is a Hom-associative algebra with $1\otimes 1$ as an identity element, then we call $B\#_{\sigma}H$ a Hom-crossed product. A necessary and sufficient condition for $B\#_{\sigma}H$ to be a Hom-crossed product is that σ satisfies the following conditions:

$$(\alpha(h_1)\sigma(l_1,\alpha(k_1)))\sigma(\alpha(h_2), l_2k_2) = \sigma(h_1, l_1)\sigma(\alpha^{-1}(h_2l_2), \alpha^{-1}(k))$$
(1)

$$\sigma(h_1, l_1)(h_2 l_2 a) = (\alpha(h_1)(l_1 \beta^{-1}(a))) \sigma(\alpha(h_2), \alpha(l_2))$$
(2)

$$\sigma(1, h) = \sigma(h, 1) = \varepsilon(h)1_{B}$$
 (3)

for all h, k, $l \in H$ and $a \in B$.

If the action " \cdot " is trivial, that is, $ha = \varepsilon_H(h) 1_B a$,

for every $h \in H$, $a \in B$, then we write $B\#_{\sigma}H = B_{\sigma}[H]$. In the following, we call the Hom-crossed product $B_{\sigma}[H]$ a Hom-twisted product, with multiplication:

$$(a#h)(b#k) = \beta^{-1}(ab)\sigma(h_1, k_1)#\alpha(h_2k_2)$$

If the action " \cdot " is trivial, then Eqs. (1) and (2) are, respectively, substituted into

$$\sigma(\alpha(l_1), \alpha^2(k_1)) \sigma(h, l_2 k_2) = \sigma(h_1, l_1) \sigma(\alpha^{-1}(h, l_2), \alpha^{-1}(k))$$
(4)

$$\sigma(\alpha^{-1}(h), \alpha^{-1}(l))\beta(a) = \beta(a)\sigma(h, l)$$
 (5)

for all h, k, $l \in H$ and $a \in B$.

Lemma 1 Let (B,β) be a monoidal Hom-algebra and (H,α) be a monoidal Hom-bialgebra, with a Hom-twisted product $B_{\alpha}[H]$ given by

$$(a#h)(b#k) = \beta^{-1}(ab)\sigma(h_1, k_1)#\alpha(h_2k_2)$$

Then we have the following conclusions:

- 1) The associativity of $B_{\sigma}[H]$ is satisfied if and only if Eqs. (4) and (5) hold.
- 2) $1_B # 1_H$ is the unit of $B_{\sigma}[H]$ if and only if Eq. (3) holds.
- 3) $B_{\sigma}[H]$ is an associative algebra if and only if Eqs. (3) to (5) hold.

Let (H,α) be a monoidal Hom-bialgebra. Let $(B,\beta,\Delta_B,\varepsilon_B)$ be a left (H,α) -comodule coalgebra and (B,β,m_B,η_B) be a monoidal Hom-algebra. Let $\sigma\colon H\otimes H\to B$ be a linear map. In this section, we derive necessary and sufficient conditions for $B\otimes H$ to be a monoidal Hom-bialgebra.

If $(B \otimes H, \mu_{B\sigma[H]}, m_{B\sigma[H]}, \varepsilon_{B\times H}, \Delta_{B\times H})$ is a monoidal Hom-bialgebra, we say that the triple (H, B, σ) is admissible and denote this bialgebra by $B_{\times}^{\#}H$.

First, we have the following lemmas:

Lemma 2 Let $B_{\sigma}[H]$ be a Hom-twisted product and $B \times H$ be a Hom-smash coproduct. The following are equivalent:

$$\beta(b_1)\varepsilon(h)\otimes\beta(b_2) = b_1\sigma(\alpha^{-2}(h), b_{2(-1)})\otimes\beta^2(b_{2(0)})$$
(6)

$$\alpha^{-1}(h) b_{(-1)} \otimes \beta(b_{(0)}) = b_{(-1)} \alpha^{-1}(h) \otimes \beta(b_{(0)})$$
(7)

for all $b \in B$ and $h \in H$.

Lemma 3 Let $B_{\sigma}[H]$ be a Hom-twisted product and $B \times H$ be a Hom-smash coproduct. If the identity $\rho(1) = 1 \otimes 1$ holds, then the following are equivalent:

$$\sigma(h, l)_1 \otimes \sigma(h, l)_2 = \sigma(h_1, l_1) \otimes \sigma(h_2, l_2)$$
(8)

$$\sigma(h_1, l_1)_{(-1)}\alpha^{-1}(h_2l_2) \otimes \beta(\sigma(h_1, l_1)_{(0)}) = h_1l_1 \otimes \sigma(h_2, l_2)$$
(9)

Lemma 4 Let $B_{\sigma}[H]$ be a Hom-twisted product and

 $B \times H$ be a Hom-smash coproduct. If $(\beta(a_1) \otimes \alpha(a_{2(-1)})\alpha^{-1}(h_1)) \otimes \beta^2(a_{2(0)}) = (a_1\sigma(\alpha(a_{2(-1)1}),\alpha^{-1}(h_1)) \otimes \alpha^2(a_{2(-1)2})h_2) \otimes \beta^2(a_{2(0)})$ holds, then we have

$$\beta(a_1)\varepsilon(h)\otimes\beta(a_2)=a_1\sigma(a_{2(-1)},\alpha^{-2}(h))\otimes\beta^2(a_{2(0)})$$

for all $b \in B$ and $h \in H$.

All of the above lemmas can be directly checked, so they are left to the readers.

Theorem 1 Let (H,α) be a monoidal Hom-bialgebra over a field k, and suppose that (B,β) is a left (H,α) -Hom-comodule coalgebra and a monoidal Hom-algebra with trivial action " \cdot ". Suppose that $(B_{\sigma}[H],\beta\otimes\alpha)$ is a Hom-twisted product with a convolution invertible morphism σ and $(B\times H,\beta\times\alpha)$ is a Hom-smash coproduct. Then the following conditions are equivalent:

- 1) $B_{\times}^{*}H$ is a Hom-bialgebra.
- 2) The conditions hold for all $a, b \in B, h, l \in H$.
- \bigcirc σ is a coalgebra map;
- $2 \varepsilon_B$ is an algebra map;

$$\textcircled{3} \ \Delta(ab) = \beta^{-1}(a_1b_1)\sigma(a_{2(-1)}, b_{2(-1)}) \otimes \beta(a_{2(0)}, b_{2(0)});$$

$$\widehat{\mathbb{S}} \alpha^{-1}(h) b_{(-1)} \widehat{\otimes} \beta(b_{(0)}) = b_{(-1)} \alpha^{-1}(h) \widehat{\otimes} \beta(b_{(0)}) ;$$

$$\widehat{0} \ \sigma(h_1, l_1)_{(-1)} \alpha^{-1}(h_2 l_2) \otimes \beta(\sigma(h_1, l_1)_{(0)}) = h_1 l_1 \otimes \sigma(h_2, l_2);$$

- $(7) \Delta_B(1_B) = 1_B \otimes 1_B;$
- 8 (B,β) is a left (H,α) -comodule algebra.

Proof 1) \Rightarrow 2) follows from the Lemmas 1 to 4, so it remains to show that 2) \Rightarrow 1). It is easy to check ε (($a \times h$)($b \times k$)) = ε ($a \times h$) ε ($b \times k$), ε ($1_B \times 1_H$) = ε (1_k) and Δ ($1_B \times 1_H$) = ($1_B \times 1_H$) \otimes ($1_B \times 1_H$). In order to prove that Δ (($a \times h$)($b \times k$)) = Δ ($a \times h$) $\cdot \Delta$ ($b \times k$), it is enough to show that for every a, $b \in B$, h, $g \in H$.

$$\Delta((a \times 1_H)(1_R \times h)) = \Delta(a \times 1_H)\Delta(1_R \times h) \tag{10}$$

$$\Delta((a \times 1_H)(b \times 1_H)) = \Delta(a \times 1_H)\Delta(b \times 1_H)$$
 (11)

$$\Delta((1_R \times h)(b \times 1_H)) = \Delta(1_R \times h)\Delta(b \times 1_H)$$
 (12)

Indeed, we use (10) and (11) to compute:

$$\begin{split} \Delta((a \times 1_{H})(b \times g)) &= \Delta((a \times 1_{H})((\beta^{-1}(b) \times 1_{H}) \cdot (1_{B} \times \alpha^{-1}(g)))) = \\ \Delta(\beta^{-1}(ab) \times 1_{H})\Delta(1_{B} \times g) &= \\ \Delta(a \times 1_{H})(\Delta(\beta^{-1}(b) \times 1_{H})\Delta(1_{B} \times \alpha^{-1}(g))) &= \\ \Delta(a \times 1_{H})\Delta(b \times g) \end{split}$$

This shows that

$$\Delta((a \times 1_{H})(b \times g)) = \Delta(a \times 1_{H})\Delta(b \times g) \quad (13)$$

Similarly, we can obtain

$$\Delta((a \times h)(1_R \times g)) = \Delta(a \times h)\Delta(1_R \times g) \quad (14)$$

Now, we use Eqs. (12), (13) and (14):

$$\begin{split} &\Delta((a \times h)(b \times g)) = \Delta(((\beta^{-1}(a) \times 1_{H}) \cdot \\ &(1_{B} \times \alpha^{-1}(h)))(\beta^{-1}(b) \times 1_{H})(1_{B} \times \alpha^{-1}(g)))) = \\ &\Delta(a \times 1_{H})\Delta((1_{B} \times \alpha^{-1}(h)) \cdot \\ &((\beta^{-2}(b) \times 1_{H})(1_{B} \times \alpha^{-2}(g))) = \\ &\Delta(a \times 1_{H})(\Delta((1_{B} \times \alpha^{-2}(h)) \cdot \\ &(\beta^{-2}(b) \times 1_{H}))\Delta(1_{B} \times \alpha^{-1}(g))) = \\ &\Delta(a \times 1_{H})(\Delta(1_{B} \times \alpha^{-1}(h)) \cdot \\ &(\Delta(\beta^{-2}(b) \times 1_{H})\Delta(1_{B} \times \alpha^{-1}(h)) \cdot \\ &(\Delta(\beta^{-1}(a) \times 1_{H})(1_{B} \times \alpha^{-1}(h))) \cdot \\ &\Delta((\beta^{-1}(b) \times 1_{H})(1_{B} \times \alpha^{-1}(g))) = \\ &\Delta((\beta^{-1}(b) \times 1_{H})(1_{B} \times \alpha^{-1}(g))) = \\ &\Delta(a \times h)\Delta(b \times g) \end{split}$$

Following this, we will show that Eqs. (10) to (12) are true.

By Lemma 4, we see that

$$\begin{split} &\Delta(a \times 1_{H}) \Delta(1_{B} \times h) = \left[(a_{1} \times a_{2(-1)} \alpha^{-1}(1_{H})) \otimes \\ & (\beta(a_{2(0)}) \times 1_{H}) \right] \left[(1_{B} \times 1_{H} \alpha^{-1}(h_{1})) \otimes (\beta(1_{B}) \times h_{2}) \right] = \\ & (a_{1} \sigma(\alpha(a_{2(-1)}), h_{11}) \times \alpha(\alpha(a_{2(-1)})_{2}h_{12})) \otimes \\ & (\beta(a_{2(0)}) \sigma(1_{H}, h_{21}) \times \alpha^{2}(h_{22})) = \\ & (\beta(a_{1}) \times \alpha(a_{2(-1)})h_{1}) \otimes (\beta^{2}(a_{2(0)}) \times \alpha(h_{2})) = \\ & \Delta(\beta(a) \otimes \alpha(h)) = \Delta((a \times 1_{H})(1_{B} \times h)) \end{split}$$

Also, Eq. (10) is proved. We use ③ and ⑧:

$$\begin{split} &\Delta(a \times 1_{H}) \Delta(b \times 1_{H}) = \left[(a_{1} \times \alpha(a_{2(-1)})) \cdot \\ & (b_{1} \times \alpha(b_{2(-1)})) \right] \bigotimes \left[(\beta(a_{2(0)}) \times 1_{H}) (\beta(b_{2(0)}) \times 1_{H}) \right] = \\ & ((ab)_{1} \times \alpha((ab)_{2(-1)})) \bigotimes (\beta((ab)_{2(0)}) \times 1_{H}) = \\ & \Delta(ab \times 1_{H}) = \Delta((a \times 1_{H}) (b \times 1_{H})) \end{split}$$

and (11) is proved. We use 4 and 5:

$$\begin{split} &\Delta(1_B \times h)\Delta(b \times 1_H) = \left[(1_B \times h_1) \otimes (1_B \times h_2) \right] \cdot \\ &\left[(b_1 \times b_{2(-1)} 1_H) \otimes (\beta(b_{2(0)}) \times 1_H) \right] = \\ &(\beta(b_1) \times \alpha(b_{2(-1)}) h_1) \otimes (\beta^2(b_{2(0)}) \times \alpha(h_2)) = \\ &\Delta(\beta(b) \otimes \alpha(h)) = \Delta((1_B \times h) (b \times 1_H)) \end{split}$$

and (12) is proved.

Thus we have $\Delta((a \times h)(b \times g)) = \Delta(a \times h)\Delta(b \times g)$, and $(B_{\times}^{\#}H,\beta \otimes \alpha)$ is a monoidal Hom-bialgebra. The proof is completed.

Definition 1 Let (H,α) be a monoidal Hom-bialgebra, (B,β) an monoidal Hom-algebra, $\sigma: H \otimes H \rightarrow B$ a linear map and $S_H: H \rightarrow H$ a linear map. S_H is called a Hom- σ -antipode of (H,α) if

$$(1 \otimes \alpha) (\sigma \otimes m_{\scriptscriptstyle H}) \Delta_{\scriptscriptstyle H \otimes H} (1 \otimes S_{\scriptscriptstyle H}) \Delta(h) = \varepsilon(h) (1_{\scriptscriptstyle B} \times 1_{\scriptscriptstyle H})$$

and

$$(1 \otimes \alpha) (\sigma \otimes m_{H}) \Delta_{H \otimes H} (S_{H} \otimes 1) \Delta(h) = \varepsilon(h) (1_{B} \times 1_{H})$$

hold for every $h \in H$. In this case, we say that (H, α) is a Hom- σ -Hopf algebra.

Proposition 1 Let $(B_{\times}^{*}H,\beta \otimes \alpha)$ be a monoidal Hombialgebra. If (H,α) is a Hom- σ -Hopf algebra with Hom-

 σ -antipode S_H and $S_B \colon B \to B$ in $\widetilde{H}(\mathcal{M}_k)$ is a convolution invertible element of $I_B \in \operatorname{Hom}(B, B)$, then $(B_\times^H H, \beta \otimes \alpha)$ is a monidal Hom-Hopf algebra with the antipode S defined by

$$S(b \times h) = (1_B \times S_H(\alpha^{-1}(b_{(-1)})))(S_B(b_{(0)}) \times 1_H)$$

for all $b \in B$ and $h \in H$.

Proof We need to prove $S * id = \eta \circ \varepsilon = id * S$ holds. For all $b \times h \in B_{\times}^{\#}H$, we compute

$$\begin{aligned} &(\mathrm{id} * S) (b \times h) = m(\mathrm{id} \otimes S) \Delta(b \times h) = \\ &m(\mathrm{id} \otimes S) ((b_1 \times b_{2(-1)} \alpha^{-1}(h_1)) \otimes (\beta(b_{2(0)}) \times h_2)) = \\ &(b_1 \times b_{2(-1)} \alpha^{-1}(h_1)) [(1_B \times S_H(b_{2(0)(-1)} \alpha^{-2}(h_2)) \cdot \\ &(S_B(\beta(b_{2(0)})_{(0)}) \times 1_H)] = \\ &(\beta^{-1}(\beta^{-1}(b_1 1_B) \sigma((\alpha^{-1}(b_{2(-1)} \alpha^{-1}(h_1)))_1, \\ &S_H(b_{2(0)(-1)} \alpha^{-2}(h_2))_1)) \times \\ &\alpha((\alpha^{-1}(b_{2(-1)} \alpha^{-1}(h_1)))_2) \cdot \\ &S_H(b_{2(0)(-1)} \alpha^{-2}(h_2))_2)) \cdot \\ &(S_B(\beta^2(b_{2(0)(0)})) \times 1_H) = \\ &(\beta^{-1}(b_1) \sigma((b_{2(-1)1} \alpha^{-1}(h_1))_1, \\ &(S_H(b_{2(-1)2} \alpha^{-2}(h_2))_1) \times \alpha((b_{2(-1)1} \alpha^{-1}(h_1))_2) \cdot \\ &S_H(b_{2(-1)2} \alpha^{-2}(h_2))_2)) (S_B(\beta(b_{2(0)})) \times 1_H) = \\ &(b_1 \times 1_H) (S_B(b_{2(0)}) \times 1_H) \varepsilon(h) = \\ &(1_B \times 1_H) \varepsilon(b) \varepsilon(h) = (1_B \times 1_H) \varepsilon(b \times h) \end{aligned}$$

A similar proof shows that $S * id = \eta \circ \varepsilon$. This concludes our proof.

References

- [1] Caenepeel S, Goyvaerts I. Monoidal hom-Hopf algebra [J]. *Communications in Algebra*, 2011, **39**(6): 2216 2240. DOI:10.1080/00927872.2010.490800.
- [2] Chen Yuanyuan, Wang Zhongwei, Zhang Liangyun. Integrals for monoidal Hom-Hopf algebras and their applications [J]. *Journal of Mathematical Physics*, 2013, **54** (7): 073515-1 073515-22. DOI:10.1063/1.4813447.
- [3] Liu Ling, Shen Bingliang. Radford's biproducets and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras [J]. *Journal of Mathematical Physics*, 2014, **55** (3):031701-1 031701-16. DOI:10.1063/1.4866760.
- [4] Lu Daowei, Wang Shuanhong. Crossed product and Galois extension of monoidal Hom-Hopf algebras [EB/OL]. (2014-05-29). http://arxiv.org/abs/1405.7528.
- [5] Blattner R, Cohen M, Montgomery S. Crossed product and inner actions of Hopf algebras [J]. *Transactions of the American Mathematical Society*, 1986, **298**(2): 671 –711. DOI:10.2307/2000643.
- [6] Yukio D, Mitsuhiro T. Cleft comodule algebras for a bialgebra [J]. *Communications in Algebra*, 1986, **14**(5): 801 817. DOI:10.1080/00927878608823337.
- [7] Montgomery S. Hopf algebras and their actions on rings [M]. Providence, RI, USA: American Mathematical Society, 1992.
- [8] Sweedler M E. *Hopf algebras* [M]. New York: WA Benjamin Inc., 1969.

Hom-扭曲积上的 monoidal Hom-Hopf 代数

游弥漫 王栓宏

(东南大学数学系,南京 211189)

摘要:设 (H,α) 是 monoidal Hom-Hopf 代数, (B,β) 是左 (H,α) -Hom-余模余代数. 构造了由 Hom-扭曲积 $B_{\sigma}[H]$ 和 Hom-冲余积 $B \times H$ 构成的新 monoidal Hom-代数 $B_{\times}^{\#}H$. 并给出了 $B_{\times}^{\#}H$ 成为 monoidal Hom-双代数 的充分必要条件 $B_{\times}^{\#}H$. 此外,设 (H,α) 是带有 Hom- σ -反对极 S_{H} 的 Hom- σ -Hopf 代数,并找到此 monoidal Hom-双代数 $B_{\times}^{\#}H$ 带有定义为 $S(b \times h) = (1_{B} \times S_{H}(\alpha^{-1}(b_{(-1)})))(S_{B}(b_{(0)}) \times 1_{H})$ 的反对极 S 成为 monoidal Hom-Hopf 代数的充分条件.

关键词:monoidal Hom-Hopf 代数; Hom-扭曲积; Hom-冲余积中图分类号:O153.3