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Abstract: To mitigate the impacts of non-line-of-sight
(NLOS) errors on location accuracy, a non-parametric belief
propagation (NBP)-based localization algorithm in the NLOS
environment for wireless proposed.
According to the amount of prior information known about the
probabilities and distribution parameters of the NLOS error
distribution, three different cases of the maximum a posterior
(MAP) localization problems are introduced. The first case is
the idealized case, i.e., the range measurements in the NLOS
conditions and the corresponding distribution parameters of the
NLOS errors are known. The probability of a communication
of a pair of nodes in the NLOS conditions and the
corresponding distribution parameters of the NLOS errors are
known in the second case. The third case is the worst case, in
which only knowledge about noise measurement power is
obtained. The proposed algorithm is compared with the
maximum likelihood-simulated annealing ( ML-SA )-based
localization algorithm. Simulation results demonstrate that the
proposed algorithm provides good location accuracy and
considerably outperforms the ML-SA-based
algorithm for every case. The root mean square error (RMSE)
of the location estimate of the NBP-based
algorithm is reduced by about 1.6 m in Case 1, 1.8 m in Case
2 and 2.3 m in Case 3 compared with the ML-SA-based
localization algorithm. Therefore, in the NLOS environments,
the localization algorithms can obtain the location estimates
with high accuracy by using the NBP method.
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he wireless localization systems have recently be-
T come an important part of human life due to the in-
creasing demand of location-based services. The position
of the targets can be located by using the measurements
obtained from the base station (BSs) whose locations are
known. These measurements include signal strength
(RSS), time-of-arrival (TOA), time-difference-of-arri-
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val (TDOA), angle-of-arrival ( AOA) or a combination
of them. In any scenario, the location accuracy suffers
from the effects of multipath propagation, fading, shado-
environmental noise, signal bandwidth, etc.,
which can cause location estimate error. Particularly,
whenever there are obstacles between the targets and the

wing,

BSs that block the direct propagation path between them,
localization accuracy faces another challenge, which ari-
ses from the NLOS radio propagation.

The harsh environments, particularly urban and indoor
environments offer almost full NLOS connections between
BSs and targets'". Woo et al. ¥ demonstrated that NLOS
error is the primary source of inaccuracy positioning.
Therefore, it is very important for positioning systems to
be able to identify the presence of NLOS measurements in
the total measurements and mitigate their effects on loca-
tion accuracy™'.

Many methods that reduce the impact of the NLOS
measurements on location accuracy have been proposed.
These works can be classified into two categories'” . The
first one discards the NLOS measurements from total
measurements after identifying them and only the line-of-
sight (LOS) measurement is used for positioning. The
second one takes all LOS and NLOS measurements into
the process of the location estimate.

A prior NLOS measurement correction (PNMC) meth-
od was proposed in Ref. [7], which finds the knowledge
of the ratio of the NLOS measurements in the total recor-
ded measurements. These NLOS measurements are dis-
carded from the location process if they are a small por-
tion of total measurements; otherwise, they are corrected
by separating the range of possible values of NLOS errors
into equiprobable segments. Through subtracting the ex-
pected error in each segment, all of the NLOS measure-
ments are corrected. This method can cause the NLOS es-
timates to be very similar to those obtained from the
measurements in LOS propagation. There are two reasons
that make the discarding of the NLOS range measure-
ments an unwise choice. One reason is that the numbers
of available neighbor BSs for the locating process in cel-
lular networks are usually not many, and the limited con-
nectivity with anchors in sensor networks makes the num-
ber of available range estimates for the location process
limited; and the other reason is that the NLOS range esti-
mates themselves have information about the location.
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Therefore, it is necessary to use the entire set of range
measurements to compute the targets’ locations in order to
improve the performance of the localization system.

The authors in Ref.[8] described the indoor ranging er-
ror as a dynamic Gaussian model, in which the instanta-
neous LOS or NLOS error at a typical time was regarded
as the drift from this general distribution dynamically.
According to the dynamic Gaussian model, a measure-
ment adaptation method was proposed to reduce the error
caused by NLOS conditions. Li et al. " took the correla-
tion between TDOA measurements caused by NLOS er-
rors into account to reduce the effects of NLOS errors on
the performance of the localization problem of semi-static
targets.

Some of the above methods are deployed under the as-
sumption that the NLOS range measurements have been
identified (that may not occur in actual systems). More-
over, some of them have high computational complexity.

In this article, the node localization problem in wireless
sensor networks is formulated as an inference problem on
a graphical model to apply NBP!'”', a variant of the belief
propagation (BP) algorithm'", to obtain an approximate
solution. Based on a priori information on NLOS error,
we propose an NBP-based localization algorithm which
can effectively incorporate both LOS and NLOS range
measurements into the location estimate process of the
nodes.

1 System Model
1.1 Network model

We consider a network consisting of a set of m anchor
nodes (anchors) named as 4, and a set of n — m sensor
nodes (sensors) named as Y. The set of all nodes in the
network is then defined as /' = ' Us. Nodes are loca-
ted in a two-dimensional Euclidean space R* and the posi-
tion of each node is regarded as a stochastic vector with
prior density, p(x,), i=1,2, ..., n. In addition, the lo-
cation of anchors is known and the sensors’ locations need
to be estimated.

Naturally, we can use an undirected graph G(V, E, U
E,) to present a sensor network localization problem in
terms of geometrical networks, where V is the set of all
nodes; E_ is the set of sensor-sensor edges; and E, is the
set of sensor-anchor edges. A pair of nodes (i,j) e E, E
= E UE, means that they are in communication range R
of each other and a subset F e V is fully connected if any
two nodes (i, j) e F are connected. Similarly, we use
Xros and yyos to denote the set of index pairs to show the
measurement between nodes is LOS and NLOS, respec-
tively. The set of all range measurements is then defined

as ¥ =x10s Uxnios = E-

1.2 Problem formulation

The measurement distance r,; between node i and node j

obtained by some detection probability P (x;, x;) =
2

exp( —ﬁ) is given as

ry=d;+b,+n,; (i,)) ex (D

where d, = || x, —x, || is the true distance between node i
and node j; n; ~ N(O, Sfj) is the measurement noise which
follows a zero-mean Gaussian distribution with variance
62; and b is the extra distance caused by NLOS propaga-
tion in addition to the LOS distance. Without loss of gen-
erality, we here assume that b, follows an exponential
distribution b, ~ N(A, ij) with mean A, and variance 3,
= A/S?j +)1§.. The value of bias b, =0 as an LOS path
exits between node i and node j, i.e., (i,j) €y, and,
otherwise, b,#0 if (i,]) €xyios-
Let an indicator binary variable be defined as

1
-

and assume that all the measurements are mutually inde-
pendent. The joint posterior probability density function
(PDF) of sensors is then given by

r,; observed
(2)

otherwise

P(X, s X0, X, [ {s; b)) =
p({s;} 1x,,0,%, .0, 000x,) *
p((rij) ‘xm+l’xm+2"”’xn) .
P(X, 0%, .0, ,X,) (3)

The location estimate of sensors is produced by maxi-
mizing the joint posterior PDF and it is expressed as

bsybotrgh) (4)

max J‘:Jl)('xm-t-l ’xm+2’”- 7xn

[EZTTE FIEH

2 NBP-Based Localization

NBP is an inference algorithm for graphical models
containing continuous,
NBP extends the popular class of particle filtering algo-
rithms, which assume that variables are related to a Mark-
ov chain on general graphs. Recently, the NBP algorithm
has been applied in many fields, particularly in localiza-
tion. The evolution of the NBP-based localization algo-

rithms can be described as follows .

non-Gauss random variables.

At the beginning, each node obtains its local informa-
tion p (x,). If available, it broadcasts its ID number
while listening to the IDs of other nodes. After that it
computes the distance to the nodes it received the IDs
from. At the first iteration, ¢ =1, the particles of nodes
are deployed randomly in the feasible region generated by
the convex hull of its neighbor nodes. The weights of
these particles are set to be 1, and the posterior marginal
is set as

po(x,.)zpi(xi) i=1,2,---,n (5)
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At iteration t = ¢, + 1, given the weighted samples,
{ We X1} of node i obtained at previous iteration ¢ =
t,, in which N is the number of particles, we derive the
measurement distance from these particles of node i to its

neighbor node j as

'—d +nu’sl_j:1 (,J) €xuos

nlm d i } <6)
+n; +bv’ s; =1 (i,J) €Xnios

]

A particle of the message between a pair of nodes (i,j)
is then drawn by shifting the coordinates of particle X} in
the direction of §* ~ U(0,2w) by an amount of the esti-

mated distance r,, that is

X=X+ [sin(65")

ij COS( gk't’) ]
Vied, jeN

(7)

In the case where node i is anchor, i.e., i €., the

message received at neighbor node j of node i is
my" (x,) = W, (x,,x)) (8)

and

ieN,je N

where &% is the set of neighbor nodes of node i,
1/,.,(xi,x,) is the pairwise potential between nodes i and
Jj. The outgoing message m; “(X{") of the neighbor nodes
j of node i is computed based on m"’ :

that is

(x;) received
from node i at iterative ¢, — 1,
l ](x )

X’”) —a, . (9)

K iw’( “(x,)

The weight of the message obtained at each particle
then becomes

k.1,

wlf.,t,+] — P(xlf.,tj-]) Wi

iy (10)
i i 1 k,t;
Y Y m,(X;")

The evolution process will be repeated until the algo-
rithm obtains a sufficient convergence. After that, the es-

timate position of node i is the product of particle X;"*'
and its weight wy"*" is
x{,+l =W,,C""+1Xf't'+l (11)

i ij

Due to the existence of the indefiniteness of the wire-
less channel and other reasons as aforementioned before,
there is some uncertainty in the estimate position of the
nodes.
NBP-based localization algorithms can tell you the relia-
bility ( belief) of the estimate position, which is compu-
ted as

Being unique to other localization algorithms,

P (x) o« p(x) [[m;" (x) (12)

ijeE

3 NLOS Location with Priori Error Information

To verify the performance of algorithms in NLOS prop-

agation conditions, we consider the scenario in which all

and the
distance measurements between sensors and anchors are 1-
hop measurements. Furthermore, the channel is assumed

. . 2
to be reciprocal, i.e., s;=s,, r,=r;, [, =1, 5,-- ;-

of the neighbor nodes of the sensors are anchors,

Based on the surveyed data, we can obtam some priori
This priori informa-
tion is very helpful for the location estimation, due to the
fact that the accuracy of the estimate location depends on

information about the NLOS errors.

how much priori information is available in several cases.
three different cases are introduced ac-
cording to the amount of the priori information we have.

In this subsection,

3.1 Idealized case: known NLOS status and distribu-
tion parameters

In this ideal case, the knowledge of which range meas-
urements are under NLOS conditions and the distribution
parameters of NLOS errors are perfectly known.

3.1.1

Assuming that the distribution of the stochastic vector
of sensors p(x,), i=m+1,m+2,--,
MAP estimate coincides with the maximum likelihood es-
timate.

The joint likelihood function of X =

ML-based localization

n is uniform, the

X

%xm+] s Ame2s "7

T .
x,} can be written as

pCIA i X)) = TT p. G =dy) -

(i.j) €xvos

H Py ()™ = A,) —d,) (13)
(i) €xnios
where p, and p, denote the PDFs of b, and n,, respec-

tively. To facilitate the maximization of Eq. (13), the
logarithmic version is considered,

n(p( 1), A
1“(/2?5,;,) 2;3-

1n(/2iw3ﬁ) lﬁi“ A oay) —dy)?

As the first term is independent of X, maximizing Eq.

bX)) =

(7 =d,)" +

(14)

(14) is in fact equivalent to minimizing the second term
and the ML location estimation of sensors then can be for-
mulated as

min Y, 252(“’*—51) + Y 2B2((2‘°”—/\[,)—d,,.)2

X ) e 205 (i.]) EXsuos
(15)

3.1.2 NBP-based localization

To reduce complexity, which is the challenge of the
ML-based localization algorithms, NBP factorizes the
joint posterior PDF in Eq. (4).

The message received at each particle of sensor i from
its neighbor anchor j is given as follows.

For (i,j) €xi0s, i- €., the neighbor anchor j has an
LOS link with sensor i, then,
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t; k,t, _ k,t, los

m_los; (X;") =P(x;,X;")p, (ry =d;) (16)

Hence, the weight of the LOS message is

Wi
w_ido" =P(X{ x)—— =
- (X, ’)m_los;;(Xf”’)
V2w, W

Gkidd (17)

exp( = (ry" =d;)"/25;)

Also, for (i,j) € xnos» 1- €. , the neighbor anchor j has
an NLOS link with sensor i, then,

m_nlos) (X;") = P(x, X p, (™ =Ay) —dy)

J ij

(18)
Hence, the weight of the NLOS message is
W
w_idy" :P(X'M’xj)m_nlos;'}(Xf’t') )
2mpB Wit (19)

exp( —( (r:;']os _ij) _d,j)z/zﬁz)
The estimate position of each sensor then is given by

At +1 k,t+1 s gk +1
£ =X w_id;

(20)
3.2 Known NLOS probability and distribution pa-
rameters

In this case, we do not know which range measure-
ments are under the NLOS conditions, but we have a pri-
ori information about NLOS probability and the corre-
sponding distribution parameters.

3.2.1 ML-based localization

The joint likelihood function in this case can be written

as

pCir ™ |X,) =
H {ai;’s[l’n”(”:g _d,-,-) ‘(l’]) € Xios| +

(i) ex

(1 =) [p, ((F™ = Ay) =dy) | (1)) € Xios ]}
(21)
where a:}’s is the probability that sensor i has an LOS link

los

; 1s the probability that there is
an NLOS link between sensor i and anchor j. Similarly to

with anchor j; and 1 — «

Eq. (15), the location estimation of each sensor can be
formulated as

. 1 los 2 los
min )y {72(5/ = dy) oy +
o (i) ex 261']'

1 nlos 2 los
2((7} _/\j') _di‘) (1 - Qy )
ZB” ] i ] ] }

3.2.2 NBP-based localization
The message received at each particle of sensor i from

(22)

its neighbor anchor j becomes

m_probj,(X\") = P(x, X\") |} m_los}(X.") +

(1 -a;")m_nlos) (X}") | (i,j)ex (23)

where m_los’, (X;") and m_nlos; (X;") are defined as
Eq. (16) and Eq. (18). The weight of message is ex-
pressed as
Wy

w_prob:" "' = P(X{" x,)——————— =

—p ij ( i J )m_probjll ( Xf,p)

V2w W
+(1—a§;“ bxp( (o _)\ij)—dﬁ)z)z

(i,j) ex

0‘1;?5 <"1:;” —d, )
i
i

(24)
The estimate position of each sensor in this case is

at,+l _ kit +1 kot +1
X7 =X;"" w_prob;

i

(25)

3.3 Known distribution parameters only

In this subsection, we consider the worst case, in
which only the distribution parameters §, and A, are
known. To estimate the position of sensors, we need to
draw a possible feasible region in which the sensors lie.
In other words, we need to obtain the upper bounds as
well as the lower bounds for the distance measurements of
each pair of nodes without knowing whether the distance
measurements are under the LOS or NLOS conditions.

We know that the measurement distance under NLOS
conditions is significantly larger than their true distance.
Therefore, the upper bound of a measurement distance
can be given by

r:j':dij"_)\ij +ﬂij (i’j> EX (26)

The lower bound is given based on the min-max meth-
od as

r;=d, =38, (i,j) ex (27)
3.3.1 MbL-based localization
For constraint r;sdu = ||x,. - X, ? sr:;, it is easy to
see that there is one position estimate lying on a cir-
. U L

ij ij

cle" -, which has its centre at x, and radius

The location estimation of the sensors can be deter-
mined by minimizing the following expression:

2ty
(d,.j- = f) (28)
Expanding (28) yields
rl o+’
d?,—(r}f+rf,)d,j+(7”2 ”) (29)

U L 2

+7;
As the ( y > "’) is the constant, therefore, the opti-

mization problem for locating sensors is equivalent to
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min 3

{dfj—(r:;—r;)dij} (30)

(i.j) ex

3.3.2 NBP-based localization
Similar to the case of the ML-based localization, the
message between a pair of nodes is expressed as

2

(i,j) ex
(31)

R
m_paras) (X;") =P(x, ,X;") ( % - di/.)

The weight of each outgoing message is

W

k,t,+1 k,t
w_paras,"" =P(X;",x)———— =
—Paras, (X; ’)m_paras};.(Xf.‘"’)

W

[
U L 2

rg, +r;
(37

Finally, the estimate position of each sensor is

(i,j)ex (32)

ati+1

kyt,+1
X

: (33)

Remark To solve the localization problem in Eq.
(5), we need to marginalize the joint posterior PDF,
P(X, X, x, | A 1™ ), which is not tract-
able for the localization problem, because this marginal-
ization will have exponential complexity with respect to
the number of sensors. There are two approaches that are
given in our work to overcome this problem: 1) The lo-
calization problem (5) is converted to an ML problem
and then it is solved by the SA algorithm; 2) The locali-
zation problem is solved by the aforementioned message-
passing method NBP.

k, 1
X" w_paras

i

4 Simulation Results

We consider a network of six nodes including five an-
chors and one sensor deployed in a two-dimensional re-
gion with the size of 40 m x40 m.

We assume that the sensor can communicate with all
the anchors. For the noise standard deviation §, of meas-
urement error and the mean A, of NLOS error of a range
measurement between anchor i and the sensor, we assume
that they are identical for all range measurements, i. e. ,
5, =6and A, = A.

To verify the performance of the algorithms, the fol-
lowing simulations are carried out, in which the perform-
ance is evaluated in terms of RMSE.

4.1 Relationship between the number of neighbors of
the sensor and the belief of its estimate position

In this subsection, we provide simulation results with
the belief of the sensor’s estimate position as the number
of the neighbor anchors of the sensor varies.

Fig. 1(a) plots the belief of the sensor’s estimate posi-
tions as the sensor is localized with only one neighbor an-
chor. The possible position estimate of the sensor lies on

a circle, which has its center at the anchor and the radius
equal to the measurement distance of the anchor-sensor.
This is because the positioning problem is solved by only
one positioning equation in this case. As the number of
the neighbor anchors is two, the positioning problem has
two solutions, as shown in Fig. 1(b). Also, the positio-
ning problem has a unique solution as the number of
neighbor anchors is equal to or larger than three, as
shown in Fig. 1 (c¢). The magnitude of these estimate po-
sitions represents their reliability, the higher the belief,
the higher the reliability, and the lower the positioning er-
ror.

Belief/10 ~*

o v & o »

2.0
él.S
$1.0
20.5
0lg :
40 "G
30 40
},
(b)
6
i, :
o il :
S 3 -
o i
3 2 :
=200 | i
0 ;
o .
40

Fig.1 Belief of the sensor estimate position. (a) m=1; (b) m
=2 H ( C) m=3

4.2 RMSE as a function of noise standard deviation

In this subsection, we provide simulation results of the
performance of the NBP-based and ML-SA-based locali-
zation algorithms in three cases depending on the amount
of NLOS error prior information as the measurement noise
standard deviation varies.

The number of NLOS anchors is set to be 1 and the
mean of the NLOS error A is set to be 5 m. The probabil-
ity o, that a range measurement between anchor i and the
sensor is an LOS measurement is set to be 0.3, meaning

that the probability of a range measurement between an-
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chor-i and the sensor is an NLOS measurement equivalent
to 0.7.

From Fig.2, we see that the values of RMSE for both
the NBP-based and ML-SA-based localization algorithms
increase when the noise level increases from 1 to 6 m.
The accuracy of the sensor’s location estimate is best
when the NLOS status and distribution parameters are
known exactly and is worst when only the distribution pa-
rameters are known. We can see that, under NLOS con-
ditions, the NBP-based localization algorithm provides
significantly better performance than that of the ML-SA-
based localization algorithms. For example, when § =6
m, the RMSE of the NBP-based localization algorithm is
reduced by about 2 m compared to the ML-SA-based lo-
calization algorithm in the case that only the information
about distribution parameters is known.

—=—ML-SA
NBP

Root mean square error/m
CrrNRWWE RN,
NOUNOUNOWNOWLNO WL

—

,_._
)
w
IS
hn
o

el S SR N VY

Root mean square error/m
CUNMOUNOUO Lo
—

Root mean square error/m

&/m
(¢)
Fig.2 RMSE vs. noise standard deviation.
Case 2; (c) Case 3

(a) Case 1; (b)

4.3 RMSE as a function of the number of NLOS an-
chors

In this subsection, we provide the simulation results of
the performance of the NBP-based and ML-SA-based lo-
calization algorithms as the number of NLOS anchors va-

ries from O to 3. From Fig. 3, we can see that the RMSE
of both of the algorithms significantly increases when the
number of NLOS anchors varies from 2 to 3, about 2.2
m in the NBP-based algorithm and 3.2 m in the ML-SA-
based algorithm. For example, the RMSE of the NBP-
based localization algorithm is reduced by about 3 m com-
pared to the ML-SA-based algorithm as the number of
NLOS anchors is 3.

8r

Root mean square error/m
wn

2 1 1 1 1
0 0.5 1.0 1.5 2.0 2.5 3.0

Number of NLOS anchors
Fig.3 RMSE vs. the number of NLOS anchors

5 Conclusion

An NBP-based node localization algorithm in the
NLOS environments is proposed. All the LOS and NLOS
range measurements are incorporated into the localization
process, and there is no range information discarded.
Given the priori information about NLOS error distribu-
tion, three cases of localization problems are introduced.
The simulation results show that the proposed algorithm
can achieve high performance in terms of location accura-
cy; even for the case in which the NLOS and LOS range
measurements are not identifiable.
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