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Abstract: To improve spectral X-ray CT reconstructed image
quality, the energy-weighted reconstructed image x,).. and the
separable paraboloidal surrogates ( SPS ) algorithm are
proposed for the prior image constrained compressed sensing
(PICCS) -based spectral X-ray CT image reconstruction. The
PICCS-based image reconstruction takes advantage of the
compressed sensing theory, a prior image and an optimization
algorithm to improve the image quality of CT reconstructions.
To evaluate the performance of the proposed method, three
optimization algorithms and three prior images are employed
and compared in terms of reconstruction accuracy and noise
characteristics of the reconstructed images in each energy bin.
The experimental simulation results show that the image x;.,. is
the best as the prior image in general with respect to the three
optimization algorithms; and the SPS algorithm offers the best
performance for the simulated phantom with respect to the
three prior images. Compared with filtered back-projection
(FBP), the PICCS via the SPS algorithm and x;.,. as the prior
image can offer the noise reduction in the reconstructed images
up to 80. 46%, 82. 51%, 88. 08% in each energy bin,
respectively. Meanwhile, the root-mean-squared error in each
energy bin is decreased by 15.02%, 18.15%, 34.11% and
the correlation coefficient is increased by 9.98%, 11.38%,
15.94%, respectively.
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‘ x T ith the development of detector technology, spec-

tral X-ray CT has become an emerging technology
recently. Spectral X-ray CT equipped with photon count-
ing detector provides energy-resolved information about
objects, which has become a research focus in recent
years'' ™. One challenge in spectral CT is the inherent

trade-off between image noise and energy resolution. The
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better energy resolution that is required, the more energy
bins required, and each energy bin becomes smaller.
Therefore, the number of photons per energy bin decrea-
ses, and image noise becomes higher. The generally used
filtered back-projection ( FBP) reconstruction algorithm
meets the growing clinical requirements of image quality
with difficulty.

The introduction of the prior image to the constrained
compressed sensing for image reconstruction was pro-
posed recently'*”, which has been shown to have the ca-
pability of suppressing image noise effectively. The usage
of the prior image constrained compressed sensing
(PICCS) method has been investigated for spectral X-ray
CT image reconstruction recently'™, where the prior im-
age was generated by the FBP algorithm, and the per-
formance of both steepest descent (SD) and conjugate
gradient (CG) algorithms is evaluated. The experimental
results show a good improvement in terms of noise level
and error of reconstructed images.

In this paper, an alternative optimization method, i.e.
the separable paraboloidal surrogates (SPS) algorithm" ™
and the image x,, derived by the energy weighted image
reconstruction method'" " are proposed to quantitatively
investigate the performance of PICCS-based spectral X-
ray CT image reconstruction. The energy-weighted recon-
structed image x,, can provide a perfect prior image and
the SPS optimization algorithm is a fully parallelizable al-
gorithm, which is suitable for PICCS-based image recon-
struction.

1 Methods and Materials
1.1 Objective function of PICCS algorithm

1.1.1
The FBP algorithm was employed for the image recon-

Prior image

struction of each energy bin. The image x,., was derived
by the energy weighted image reconstruction method,
i. e. a linear combination of the FBP images of each ener-
gy bin:

W FBP
Kiins = 2 WX (D
m

where m is the index of energy bin; x!', and w, are the
FBP image and weight of the m-th energy bin, respective-
ly; w,, is proportional to the contrast-to-noise variance ra-
tio in the FBP image of each energy bin, which can be
expressed as'"”’
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1.1.2 Unconstrained objective function

According to the compressed sensing (CS) theory, the
signal can be recovered from a limited number of samples
by exploiting the sparse nature of the signals in a trans-
form domain. The recovery of an image with sparsity can
be described as

x =argmin | (x) |, s.t. Ax=y xeR"™' (3)

where x is the reconstructed image; ¥(x) is a sparsifying
transform of image x; A is the system matrix that relates
projection measurements vector y = log (f/n) to image
vector x; fis the incident fluence per detector and # is the
measured projections. | P(x) \ , can be expressed by the
total variation v of x. Given the image discretization x
R"™ " and A = {Mn: n e N}, v(x) is defined as the
[,-norm of an image bidimensional spatial gradient
l,-norm:

p(x) |, = v(x) =

(xm _xi)2 +(xi+M _xi)2 (4)

1 <i <M(N-1)
igA

The PICCS can be formulated as a constrained or an
unconstrained minimization problem. The reconstruction

of an image using the constrained approach can be formal-

ly expressed as"™

x =argmin f.(x) s.t. Ax=y xeR"™" (5)

L) =alpx-x) |, +(1-a) [px) |, (6)

where x, is the prior image; o e [0, 1] is a scalar that
controls the relative weight of the prior image.

The above minimization problem can be converted to
an unconstrained minimization problem, and the final ob-
L . 156]
jective function can be expressed as

X = argminf, (x) x e R"™! @)
fu@) =alypx-x) [+ - [0 |, +

%(y ~AX)"D(y - Ax) =av(x -x,) + (1 ) v(x) +
2y - A0 "D(y - Ax) (®)

where D =diag{n}; A is a data consistency parameter.
1.2 Minimization of objective function

The partial derivative of the objective function at the i-
th pixel can be expressed as"™®

aix,.f“(x) =aaixiv(x—xp) +(1 —a)(%iv(x) +

AMA"(Ax -y)] (9

where the gradient of v(x) is

) X + Xy~ 2
a7’1)(.!&?) = - . . +
i (xi+l _xi) ('xi+m _xi)

Xi =X

+

2 2
(xi _xi—l) + (xi—l+M _xi—l)

Xi=Xim

i

(10)

2 2
('xi—M+l _'xi—M) +(xi _x,-m)

To remove the singularities in formula (10), a modified
total variation v,(x) can be employed as

Sy =x) + (X —x)7 +e (1)

1 <i <M(N-1)
igA

v,(x) =

where g should be large enough to remove the singulari-
ties in the denominator and be small enough to preserve
the shape of the function.

Since there is the gradient of the objective function
fi..(x), the gradient-based optimization methods such as
the steepest descent ( SD) algorithm, conjugate gradient
(CG) algorithm and separable paraboloidal surrogates
(SPS) algorithm can be used to solve the minimization
problem'™™', among which the SD and CG algorithms in-
clude two steps: determination of the search direction d
and step size . For the SD algorithm, d is set to be the
negative gradient of the object function f, (x). For the
CG algorithm, d is set to be a set of conjugate gradient of
the object function f, (x). Besides, both step sizes can
be determined by a line search method, which is a simple
algorithm that uses the criterion of the Wolfe condition.
In this paper, all the three algorithms were performed
with the same stop criterion, i. e. the relative error e of
the adjacent iteration results:

” X =% ”
[ x|

where k is the iteration number; x, is the k-th iteration re-
sult; and the ideal error should be O for all algorithms.

(12)

e, =

1.3 Metrics of image quality evaluation

In order to evaluate the quality of the reconstructed im-
ages, several image evaluation metrics including standard
deviation ¢, root-mean-squared error e
tion coefficient ¢, are used:

and the correla-

rms
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where j=1,2, ..., M, and M is the total number of pix-
els; x; and x;.ef represent the pixel values of the recon-
structed image and reference image, respectively; and
their corresponding mean pixel values are X and X', re-
spectively. o and e are used to evaluate noise level and
the accuracy of images in energy bins, respectively. The
> the better the reconstructed image; the
higher c, stands for better correlation and greater similari-
ty of the texture structure of images.

Besides, the Laplacian gradient was used to reflect the
change of the pixel gray level of the reconstructed image.
The greater L, means the more obvious profile, and the

less o or e

more abundant image detail'”'. Given the image discreti-
zation x e R"™*', A={MnUM(n-1) +1:ne N}, the
Laplacian gradient L, can be defined as follows:

| Vx, +Vx, +Vx, |

wt <E -1
L= oy - (1o
where
Vx, =3x, =X,y —X;_, —X;, 01

Vx,=2x-x,_, =%,y
VX, =3% =Xy =X = Xowa

1.4 Experimental dataset

Genat4 simulation Toolkit'*""" was used to simulate
spectral X-ray CT to generate projections in three energy
bins. The simulations were based on single-slice fan-
beam scanning. The fan angle was 20. 2°, the scanned
object was a cylindrical phantom; and the related cross-
section parameters of the phantom are given in Tab. I.
The equidistant linear detector was set to be 380 mm in-
cluding 190 detector elements; the distances from the
source to the center of phantom and detector were set to
be 506 and 1 066 mm, respectively; the rotation angle
was in the range [0, 277] and the scanning was performed
every 1° with 10° entrance photons emitted by a 140 KeV
X-ray spectrum. The detector pixels allowed a binning of
the detected pulses into three energy bins and the energy
thresholds were 58.5 and 86.5 KeV, where binl, bin2
and bin3 are used to represent the first, second and third
energy bins. The calculated proportion of incident photon
quantity of each energy bin was 58. 3%, 26. 1% and
15.6% , respectively, according to the emission spec-
trum. All images were generated on a 190 x 190 pixel

Tab.1 Geometric parameters and components of cylindrical
phantom in cross-section
Center Radius/ . .
. Material composites
coordinates/ mm mm
(0.0,0.0) 100 CsHgO,
(0.0,50.0) 25 14.8%C+11%H+74.2%0O

(-30.0, -30.0) 15
(40.0, -40.0) 15

22.5%Ca+20.4%C +9.4%H +47.7% O
1.2% 1+98.8% H,0

matrix, and the reference image was the noiseless FBP re-
construction image from the simulated projection data.

2 Results and Discussion

2.1 Comparison of the performance of PICCS with

different prior images

The objective function was optimized by the SD, CG
and SPS algorithms, respectively. For each algorithm,
three different images, i.e., the FBP reconstruction im-
age of the first energy bin (x| ), the FBP reconstruction
image of the second energy bin (xi;) and the image
(x,,.) derived by the energy weighted method, were
served as the prior image for performance evaluation,
where the prior image parameter o was set to be 0.5,
When the relative error between the adjacent iteration re-
sults was less than 10 ™", the optimization procedure en-
ded. The relative errors of the objective function values
of adjacent iterations of each energy bin with SD, CG and
SPS algorithms vs. the iteration number are plotted in
Fig. 1. For Figs. 1(a), (b) and (c), x. was set as the
prior image. For Figs. 1(d), (e) and (f), x,, was set as
the prior image. For Figs. 1(h), (i) and (j), x;’m was
set as the prior image. The image correlation coefficients
¢, and the root-mean-squared errors e, relative to the ref-
erence image are listed in Tabs. 2, 3 and 4, where the
reference image refers to the noiseless FBP reconstruction
image of the phantom. Fig.2 shows e_ and ¢, of recon-
structed images optimized by the above three optimization
methods with respect to the three different prior images,

FBP FBP d w
Ist » xan an xbins'

i.e.x

From the above results, the performance comparison of
the three optimization methods and three prior images for
the phantom developed in this paper can be concluded as
follows:

1) The stability of image reconstruction with regard to
the prior image. Compared with the SD and CG algo-
rithms, the SPS algorithm has the least sensitive to the
prior image, and generally achieves the best stability with
regard to e and ¢, while both the CG and SD algo-
rithms are sensitive to the prior image.

2) The image quality of the three energy bins. In gen-
eral, e and c, of reconstructed images optimized by the
SPS algorithm are better than those by the SD or CG algo-
rithms, particularly for the 3rd energy bin, and the results
with the SPS algorithm are much better than those with the
SD or CG algorithms. Meanwhile, image x;, is generally
the best one as the prior image for image reconstruction.

2.2 Comparison of FBP and PICCS-based image re-
construction

Based on the above experiments, the SPS algorithm
and x,, are employed to optimize the PICCS objective
functions where « is set to be 0.5. The weights of the
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Fig.1 Relative error e of the adjacent iteration results of each energy bin vs. iteration number k. (a) SD with x{5F as the prior image;

Ist

(b) CG with xB” as the prior image; (c) SPS with x5 as the prior image; (d) SD with x5 as the prior image; (e) CG with x52} as the prior im-

age; (f) SPS with x5 as the prior image; (g) SD with x};, as the prior image; (h) CG with xy},, as the prior image; (i) SPS with xy},, as the prior

image
Tab.2 Performance of three algorithms in each energy bin with x." as the prior image
Binl Bin2 Bin2
Measured
SD CG SPS SD CG SPS SD CG SPS
€ims 0.280 3 0.2852 0.270 0 0.277 3 0.276 5 0.241 0 0.2352 0.253 4 0.178 6
c, 0.928 2 0.928 9 0.929 8 0.936 1 0.9359 0.972 8 0.945 1 0.917 9 0.989 6
Tab.3 Performance of three algorithms in each energy bin with x5, as the prior image
Binl Bin2 Bin2
Measured
SD CG SPS SD CG SPS SD CG SPS
Cms 0.256 3 0.2625 0.264 2 0.253 1 0.259 8 0.238 5 0.227 4 0.2159 0.177 1
[N 0.976 7 0.960 5 0.941 9 0.977 8 0.961 8 0.978 4 0.963 6 0.967 7 0.991 8
Tab.4 Performance of algorithms in each energy bin with x\,. as the prior image
Binl Bin2 Bin2
Measured
SD CG SPS SD CG SPS SD CG SPS
€ims 0.254 9 0.251 0 0.263 6 0.246 3 0.249 3 0.2413 0.2259 0.2225 0.179 1
[N 0.965 0 0.966 4 0.943 4 0.968 2 0.968 1 0.974 2 0.959 2 0.9515 0.989 8

three energy bins in formula (1) are set to be 0.420 3,
0.320 2, and 0. 259 5, respectively, to generate prior
image x;“m. Figs.3(a), (b), (c) and Figs.3(e), (1), (g)
show the FBP and PICCS reconstructed images of three
energy bins, respectively; Fig.3(d) shows the prior im-
age x,, . From Fig. 3, we can see that the PICCS algo-
rithm has the ability to reconstruct energy bin images ef-
fectively, and the reconstructed images have clear profiles
and less noise. Meanwhile, the edge information of the

images is well preserved.
Tab. 5 and Fig. 4 show the quantitative evaluation of

image noise level o, e, and c, for the reconstructed im-

age of each energy bin. Since the transmitted photons are
distributed into three energy bins, the recorded photons
are relatively fewer in each energy bin, thus images re-
constructed with the FBP algorithm may contain a signifi-
cant amount of noise. Furthermore, the noise level in dif-

ferent energy bins is affected by the incident photon flux,
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Fig.2 Variation of e, and ¢, of reconstructed images opti-

S
mized by three optimization methods with respect to the priori
mages. (a) e, (b) c.

©) () ()
Image reconstruction with FBP and PICCS algorithm
for each energy-bin. (a) FBP images of the 1st energy bin; (b) FBP
images of the 2nd energy bin; (c) FBP images of the 3rd energy bin;
(d) Energy-weighted reconstructed image as the prior image; (e) PICCS
image of the 1st energy bin; (f) PICCS image of the 2nd energy bin;
(g) PICCS image of the 3rd energy bin

Fig. 3

and image noise increases as the incident photon flux de-
creases. Compared with the FBP algorithm, the PICCS
has the ability to reduce noise up to 80.46%,82.51%,
88.08% in each energy bin, respectively, thus image re-
construction with the PICCS can suppress noise effective-
ly. Moreover, e, of the PICCS reconstructed image in
three energy bins is decreased by 15.02%, 18.15%,
34.11% and image c, is increased by 9.98%, 11.38%,
15.94%, respectively. Thus, the image accuracy and
similarity relative to the reference image are improved ob-
viously, and the image quality increases as the photon
mean energy of each energy bin increases.

Tab.5 o, e, and ¢, of images reconstructed by FBP and
PICCS algorithm for each energy bin
Method o € c,
binl 0.173 5 0.310 2 0.857 8
FBP bin2 0.200 1 0.294 8 0.874 7
bin3 0.2525 0.271 8 0.8537
binl 0.0339 0.263 6 0.943 4
PICCS bin2 0.0350 0.2413 0.974 2
bin3 0.030 1 0.179 1 0.989 8
0.3r 0.4r 1.0p
* O 0
0.2 e ¥ 0.3 ©
= E % 0.9t
0.1} O K %
0 O o 0.21
8 I S 0 8 1

Binl Bin2 Bin3 Birl11 Bian Binl3 Binl Bin2 Bin3
() (b) (o)
Fig.4 FBP and PICCS images in the corresponding energy
bins. (a) o; (b)ey,: (€) c.

ms >

3 Conclusion

The PICCS algorithm and its performance were exten-
sively investigated for the spectral X-ray CT image recon-
struction with three unconstrained optimization algorithms
and three prior images including the image x, . derived
by energy weighted image reconstruction. The experi-
mental results demonstrate that the SPS algorithm is the
best choice among the three mentioned methods to opti-
mize PICCS objective functions. Compared with x|
X2, xp . is generally the best choice as the prior image
for image reconstruction. Compared with the FBP algo-
rithm, the PICCS algorithm has the better capability to
reduce noise and error in reconstructed images of all three
energy bins,

and

and preserve a good similarity of image
quality relative to the FBP reconstructed image.

Although the usage of Geant4 for the projections simu-
lation can achieve good approximation to the real projec-
tion data, the detector and electronic noise should also be
included to accurately model the imaging process in the
future investigation. Moreover, the number of energy
bins and their allocations also need to be investigated to
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