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Abstract: In order to improve the performance of the attribute
reduction algorithm to deal with the noisy and uncertain large
data, a novel co-evolutionary cloud-based attribute ensemble
multi-agent reduction ( CCAEMR) algorithm is proposed.
First, a co-evolutionary cloud framework is designed under the
MapReduce mechanism to divide the entire population into
different co-evolutionary subpopulations with a self-adaptive
scale. Meanwhile, these subpopulations will share their
rewards to accelerate attribute reduction implementation.
Secondly, a multi-agent ensemble strategy of co-evolutionary
elitist optimization is constructed to ensure that subpopulations
can exploit any correlation and interdependency between
interacting attribute subsets with reinforcing noise tolerance.
Hence, these agents are kept within the stable elitist region to
achieve the optimal profit. The experimental results show that
the proposed CCAEMR algorithm has better efficiency and
feasibility to solve large-scale and uncertain dataset problems
with complex noise.
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attribute

he aim of attribute reduction using the Rough set
T theory is to discover the minimum attribute set and
induce the minimum length of decision rules inherent in
an information system, while retaining a much higher ac-

curacy and efficiency!' ™. The attribute reduction is con-
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sidered a common technique for data preprocessing in data
mining and knowledge discovery, and its progress has
been made on such representative topics as feature selec-
tion, multi-granulation analysis, noisy processing and so
on”". However, the real-life datasets are available eve-
rywhere from the sensor networks, social networks, and
the proprietary databases, and they often refer to incom-
pleteness, uncertainty and vagueness'”'. Most attribute
reduction algorithms are very unreliable when applied di-
rectly for extracting knowledge from the ever-greater
number of samples with complex multiple relevant struc-
tures. Moreover, noise is one of the main sources of un-
certainty in applications. It has been shown that most tra-
ditional algorithms are not robust to noise. Hence, there
is an urgent need to propose some novel and effective at-
tribute reduction algorithm to deal with these large-scale
complex datasets.

In recent years, a few various attribute reduction algo-
rithms and models have been discussed. Zhang et al. '™
presented the parallel algorithm for computing equiva-
lence classes, decision classes based on the MapReduce
model, which can be used to deal with massive data by
updating rough set approximations.
al. " enhanced the parallel large-scale rough set-based
methods for knowledge acquisition, and implemented
them on such representative MapReduce runtime systems
to mine knowledge from big data. Qian et al. """’ explored
a novel structure of { key, value) pair to speed up the
computation of equivalence classes and attribute signifi-
cance, and parallelized the traditional attribute reduction
process based on the MapReduce mechanism. Xu et
al. """ provided a new approach to approximate reduction
of interval-valued multi-decision tables with the distribu-
ted data storage architecture of big data. It has been em-
pirically and theoretically demonstrated that the using Ma-
pReduce technique can obtain better attribute reduction
performance. Nevertheless, these results by using the
above algorithms are not sometimes guaranteed to be the
same results as those achieved by implemented on the
whole and non-separated large-scale dataset. Since most
(key, value) pairs mainly focus on optimizing their re-
spective objectives, they will cause the inefficient approx-

Besides, Zhang et
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imation without the information-sharing strategy. The op-
timality of cooperative co-evolution is best expressed as
the Nash equilibrium of self-adaptive balance achieved by
the co-evolutionary populations >’ , so the combination of
the MapReduce framework and cooperative co-evolution
to greatly enhance attribute reduction performance in big
datasets has motivated us to investigate a novel attribute
reduction algorithm.

To address the above-mentioned problems, a novel co-
evolutionary cloud-based attribute ensemble multi-agent
reduction (CCAEMR) algorithm is proposed in this pa-
per. A co-evolutionary cloud framework is designed to
divide the entire population into many co-evolutionary
subpopulations with a self-adaptive scale. Then, a multi-
agent ensemble strategy of co-evolutionary elitist optimi-
zation is constructed to ensure that subpopulations can ex-
ploit any correlation and interdependency between interac-
ting attribute subsets. Therefore, the Pareto front region
of the stable multi-agent co-evolutionary elitist can be
achieved and the better knowledge of attribute reduction
from large datasets can be selected. Experimental results
indicate that the proposed CCAEMR algorithm has better
feasibility and effectiveness than traditional algorithms,
and it can obviously boost superior performance for attrib-
ute reduction.

1 Co-Evolutionary Cloud Framework

Since the MapReduce model provides a scalable and ro-
bust framework to automatically split the whole dataset
into many data subsets, we mainly focus on designing
proper {key,value) pairs to implement the map and re-
duce functions for parallel attribute reduction in big data-
sets. In this section, the co-evolutionary cloud framework
is designed under the MapReduce mechanism to divide
the entire population into co-evolutionary subpopulations
with self-adaptive scale. These subpopulations will share
their rewards to accelerate attribute reduction implementa-
tion. This framework can exploit and explore the inherent
parallelism of co-evolutionary populations for attribute re-
duction, and it is built up by the following steps as shown
in Algorithm 1.

Algorithm 1  Co-evolutionary cloud framework ( CCF)

Input: Co-evolutionary Subpopulation,.

Output: MapReduce probability (key,, value,).

Design the best Subpopulation, with the self-adaptive
probability p,, which represents the probability of (key,,
value,) on the MapReduce. The probability p, is formula-
ted as follows:

fSubpop‘
s W= (D
N/
Jj=1

where r is the number of co-evolutionary individuals in
the Subpopulation, ; f; is the best fitness of the j-th indi-

fPop + WifSuhpnp,

p; =
.fPop

vidual; fg,,.., 18 the local best fitness of Subpopulation, ;
and fp,, is the global best fitness of the whole population.

Partition the subpopulations. If the local best fitness of
most subpopulations arrives in the same target area, Sub-
population; learns from any co-evolutionary subpopula-
tions Subpopulation;.

Continue to partition subpopulations, and the consump-
tion of computing resources will be increased.

Define the formulation cn(#) as follows:

n-1

en(r) = 3 F(Ib (1) (2)

0.85
0.15

) Vj [ f(by (1)) =f(Ib, (1)) | <&
Fb, (1)) = { otherwise
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where § is the threshold set between the local best fitness
of subpopulations in the i-th iteration and the average fit-

ness from the 1st to the (7 —1)-th iteration; f(ﬁ( t)) re-
presents the average fitness from the 1st to the (7 —1)-th
iteration as follows:

n-1

- > f(by (1))

_ k=1

(1)) = F (4)
Merge some related subpopulations into a new subpop-

ulation according to the local best fitness diversity of sub-

populations, which is computed as

1
cn(t)

diversity (¢) = (5)
where cn (¢) denotes the sum of the difference number
which meets threshold set 5. Thus, most subpopulations
can be merged, respectively.

Re-construct the parallel operation (key,, value,) for
each Subpopulation; by the MapReduce formwork and the
local best fitness diversity value of subpopulations as fol-
lows

key, = p, x diversity () x Tow = sen, (6)
fPop
value, = w, x diversity (¢) x key, (7)

2 Multi-Agent Ensemble Strategy of Co-Evolu-
tionary Elitist Optimization

Currently, most attribute reduction algorithms are sen-
sitive to noisy big datasets, which will result in some in-
accurate or unexpected reduction results. In order to en-
hance the robustness of attribute reduction, a multi-agent
ensemble strategy of co-evolutionary elitist optimization
(MESCEQ) for attribute reduction is constructed to deal
with the big dataset with complex noise. This strategy en-
sures that the co-evolutionary subpopulations can provide
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an easy balancing strategy between exploration and ex-
ploitation to improve the performance of attribute reduc-
tion. It also addresses the limitations of the existing
MapReduce structure and interaction by using the meta-
heuristics organization model and the dynamic adaptation.

There are five agents: main elitist agent ( MEA) ,
slave elitist agent (SEA), population agent (PA), sub-
population agent ( SA) and individual agent (IA) , as de-
scribed in Fig. 1. Each agent is formed from its individual
agent and controlled by its own SA. The MEA is evalua-
ted as MapReduce,, and then its fitness is passed back to
all participating agents. This strategy is illustrated in Fig.
2, and its steps are detailed in Algorithm 2.

MapReduce, MapReduce,, _;

Co-evolutionary
optimization

MapReduce;

O Main elitist agent;® Slave elitist agent
[ Population agent ; l Sub-population agent
A\ Individual agent

Fig.1 Organization representation of structural multi-agent co-
evolution

Elitist

range of elitists

SA

(0,0)

Forward

re-extend

(0,0)

Fig.2 Multi-agent ensemble strategy of co-evolutionary elitist
optimization

Algorithm 2 Multi-agent ensemble strategy of co-ev-
olutionary elitist optimization ( MESCEQO)

Input: Multi-agent MEA, SEA, PA, SA and IA.

Output; Pareto front region of stable multi-agent co-ev-
olutionary elitist.

Generate a random location of MEA which starts in a
horizontal row at the bottom right corner of the MapRe-

duce framework. All the other agents make their move
simultaneously, and SEA can move into a position occu-
pied by such two agents as PA and SA. MEA catches the
SEA agent when PA and SA move into the position occu-
pied by IA.

Design the forward extend range of elitist agents as

xie[(gi‘ni),(ei"'”fh)] (8)
‘fl’op _fSubpop, ‘
My )

where «, represents each extending step length.

Evaluate MEA around the center of the Pareto front by
using the agents of its subpopulation. IA located in the
edges of the Pareto front is preferable when the shape is
concave. These fitness values are sent to the same neigh-
bor MEA to re-evaluate its own elitist agent. When MEA
is selected into the archive, the penalty is imposed on
SEA which has the same grid coordinate as the selected
MA. The penalty function is defined as

(10)

@ (x) =A,.(M)

Y (D)

where £(x) is the attribute subsets; vy, (D) is the re-
duction quality of attribute subsets &(x) relative to deci-
sion attribute set D, and A, is the adaptive penalty factor,

A= (11)

According to the A, proximity degree of approximation
to the optimal solution, the penalty function @ (x) can be
adapted to adjust the fitness value, which greatly im-
proves the convergence of the multi-agent in the attribute
approximation space of large-scale datasets.

Consider a set of SA and IA that have the grid coordi-
nates. As the forward extend way is based on the fitness
of solutions, the neighborhood agent will be eliminated
simultaneously, and MEA is preferable to PA after SEA
has entered the archive.

In order to further prevent crowding of PA, SA and
IA, the forward re-extend way is used to improve the
convergence of all agents. MEA can have a better grid
dominated by its neighborhood agents and thus all agents
obtain a well approximated and well-distributed archive
set. Hence, the Pareto front region of stable multi-agent
co-evolutionary elitist can be achieved.

By using the MESCEO strategy, five kinds of agents
are kept within the stable elitist region to achieve optimal
profit. Meanwhile, this strategy can lead the elitists with
a co-evolutionary cloud framework to find the favorable
regional area of equilibrium optimal solution set. So, it
improves the attribute reduction performance to converge
onto the Pareto front in the noisy big datasets.



Co-evolutionary cloud-based attribute ensemble multi-agent reduction algorithm

435

3 CCAEMR Algorithm

To improve the computing performance of approxima-
tions of massive complex attribute sets, we recommend the
attribute  ensemble multi-agent reduction  algorithm
(CCAEMR) based on the above proposed CCF framework

and MESCEO strategy. The CCAEMR can construct the
parallel framework to compute the positive region and dis-
cernibility matrix using MapReduce, and it can well avoid
the shortcoming that most of traditional algorithms only
run on a few of computers to deal with big datasets. The
flowchart of the CCAEMR is illustrated in Fig. 3.
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Fig.3 Graph representation of CCAEMR flowchart

4 Experimental Study

In this experiment, compared with traditional algo-
rithms, we conduct the performance studies of the pro-
posed CCAEMR algorithm on representative datasets.
These datasets are selected from the protein datasets ( Liv-
erACO) , biomedical datasets ( Ovarian-cancer ), NIPS
2003 feature selection challenge datasets ( Dorothea) , and
public microarray datasets ( Prostate). The dimensionali-
ties (from 2 x 10° to 1 x 10°) and sample sizes ( from
500 to thousands) can represent the real practical applica-
The datasets stratified ten-fold cross-validation
(10-FCV) is employed for data validation. Our experi-
ments run on the Apache Hadoop platform with Hadoop
version 1. 0. 1 and Java 1. 6. 0. 12. The software being
used is Microsoft Visual Studio 2005 and Visual C#. The

tions.

operating system is Linux CentOS 5.2 Kernel 2. 6. 18.
The comparative results are used to evaluate the effi-
ciency of the CCAEMR, compared with such representa-
tive algorithms as FRRCUT™' | and GARIv''". We add
some random numbers to each attribute value as attribute
noise rate, and further observe the variation of average
misclassification cost on four representative datasets. We
define n,, as the number of objects classified incorrectly,
ng, as the number of objects with deferment decisions,
Myp as the cost for classifying an object into the negative
region when it belongs to the positive region, and w,, as
the cost for classifying an object into the boundary re-

gion. The misclassification cost can be calculated as
MCF_cost = nyppunp + Nypibyp (12)

Fig. 4 presents the average comparison results of mis-
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Fig.4 Performance comparisons of three algorithms with dif-
ferent levels of incremental noise rate. (a) LiverACO dataset;
(b) Ovarian-cancer dataset; (c) Dorothea dataset; (d) Prostate dataset

classification cost and its corresponding running time.
This experiment is performed with different levels of
noise rate values from 6.0% to 14.0% . The x-axis per-
tains to different levels of incremental noise rate, whereas
the y-axis concerns the variation of updating misclassifica-
tion cost and CPU running time. It can be observed that
the variations of the misclassification cost and the running
time values rise as the level of the additional noise rates
increases. This indicates that the additional noise rate has
a strong impact on the classification performance. How-
ever, we can see from Fig. 4 that the value variation of
the CCAEMR is small in most cases. We take the Liver-
ACQO dataset as an example, when the level of additional
noise rate ranges from 10.0% to 12.0% , the variation of
misclassification costs of the CCAEMR is 2. 12. When
the level of noise rate is from 12.0% to 14.0% , the var-
iation of misclassification costs is 1.87. Meanwhile, the
CPU time curve of the CCAEMR rises slightly and re-
mains stable. Despite its appealing performance, the FR-
RCUT is dominated by the CCAEMR in most cases
throughout our experiments. Furthermore, with the num-
ber of levels of noise rate dynamically increasing, the ef-
ficiency of the CCAEMR is more and more clear. These
similar behaviors also hold for other datasets.

The aforementioned analysis shows that the CCAEMR
can delete many more unnecessary objects from different
datasets, construct fewer solutions and take far less run-
ning time for attribute reduction. Meanwhile, the CCAE-
MR is suitable for dealing with attribute reduction in big
datasets with different additional noises, overcoming the
limitations of traditional attribute reduction algorithms in
discovering and exploiting attribute structures inherent
with complex noise.

5 Application Performance for Neonatal Brain
3D-MRI

As the neonatal brain 3D-MRI has the insufficient tis-
sue contrast with the heterogeneous and dynamic changing
characteristics, the process of removing non-brain tissue
is the first module of most brain MRI studies. It is also
clear that the neonatal brain has low spatial resolution and
insufficient tissue contrast, so the edges of the non-brain
region may be easily mistaken for the brain region'"” ™.
In the following experiment, we will assess the perform-
ance of the CCAEMR on attribute reduction for multi-at-
las-based simultaneous labeling of inner and outer cortical
surfaces of neonatal brain 3D-MRI. Fig.5 shows the sur-
face distance from 4 to 16 months in two typical subjects
by adding 5% and 8% Gaussian noise into neonatal brain
3D-MRI, respectively. It can be noticed that the cortical
thickness develops dynamically in neonates, particularly
from 4 to 8 months. As the edges of different organiza-
tions are fuzzy and the 3D-MRI data is vulnerable under

the influence of noise, the non-brain region may be easily
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4 months 12 months 16 months

4 months 8 months 12 months 16 months

(b)
Fig.5 Longitudinal cortical surface labeling results in two rep-
resentative neonatal subjects. (a) With 5% Gaussian noise; (b)
With 8% Gaussian noise

mistaken for the brain region during the process of organi-
zation merging. However, after the CCAEMR is used to
segment them, the outline of watershed is easily taken as
the initial curves of level set to realize the automatic seg-
mentation of brain tissue. The CCAEMR substantially
improves the accuracy and robustness of brain extraction,
as well as keeping the details of different brain regions.

To quantitatively evaluate the consistency of results,
we compute the average value of symmetric distance of
boundaries for labeling regions between each pair of
aligned longitudinal surfaces of 10 neonatal subjects, as
shown in Fig. 6. The average boundary distance are 0. 63
+0.02 mm (CCAEMR), 0.76 £0.03 mm ( Warfield et
al. algorithm'"') | and 0. 69 +0.04 mm ( Wang et al.
algorithm'"’ ) respectively. So, the CCAEMR achieves a
much lower boundary distance. It can be dynamically
adaptive to derive from atlas surfaces and cortical folding
geometries, exhibiting the strong improvement for com-
plex neonatal brain 3D-MRI. The above results have im-
portant implications for the forecasting and diagnosis of
the brain morphometry and cortical surface reconstruc-
tion.

1.0y
OCCAEMR; ® Warfield et al. algorithm

0.9F @ Wang et al. algorithm

Distance/mm

0.3

1 2 3 4 s 6 17 8 9 10
Neonatal subjects

Fig. 6 Quantitative comparisons of distance of boundaries for
labeling regions

6 Conclusion

With the increasing datasets, the performance of tradi-
tional attribute reduction algorithms will deteriorate rapid-
ly and the distribution of solutions may be non-uniform.

In this paper, we introduce two contributions to the study
of the attribute reduction algorithm the use of the co-ev-
olutionary cloud framework and a novel multi-agent en-
semble strategy of co-evolutionary elitist optimization.
Then, we propose a novel co-evolutionary cloud-based
attribute ensemble multi-agent reduction ( CCAEMR) al-
gorithm, and provide the insight into the attribute reduc-
tion issue of the current big data application. Extensive
experimental comparative studies confirm that the CCAE-
MR outperforms some traditional algorithms in terms of
accuracy and efficiency. Meanwhile, the successful appli-
cation in the neonatal brain 3D-MRI strongly demon-
strates that the CCAEMR has the superior application per-
formance to deal with complex medical brain datasets
with noise.
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