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Abstract: In order to solve the problem that the global
navigation satellite system ( GNSS) receivers can hardly detect
the GNSS spoofing when they are deceived by a spoofer, a
model-based approach for the identification of the GNSS
spoofing is proposed. First, a Hammerstein model is applied
to model the spoofer/GNSS transmitter and the wireless
channel. Then, a novel method based on the uncultivated wolf
pack algorithm (UWPA) is proposed to estimate the model
parameters. Taking the estimated model parameters as a
feature vector, the identification of the spoofing is realized by
comparing the Euclidean distance between the feature vectors.
Simulations verify the effectiveness and the robustness of the
proposed method. The results show that, compared with the
other identification algorithms, such as least square (LS), the
iterative method and the bat-inspired algorithm ( BA),
although the UWPA has a little more time-complexity than the
LS and the BA algorithm, it has better estimation precision of
the model parameters and higher identification rate of the
GNSS spoofing, even for relative low signal-to-noise ratios.
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poofing interference'"’ is similar to a global naviga-
S tion satellite system ( GNSS) signal. It is produced
by a spoofer and it can mislead satellite navigation receiv-
ers into wrong navigation and positioning. This kind of
interference and the satellite signal can be overlapped in
time, frequency and spatial domains. So, the spoofing
can obtain the same processing gain as well as the real
signal and it is difficult to detect. Existing works mainly
aimed at identification of spoofing by utilization of signal
features, such as absolute powerm, time-of-arrival"’,
angle-of-arrival™™, etc. Recently, wireless transmitter
identification based on model parameters has made great
progress”” ™. The results show that the model parameters
are effective, even for relatively low signal-to-noise ratio
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(SNR) and small samples. There are some classical
methods for the estimation of model parameters, such as
the LS algorithm" and the iterative method'”. However,
there are some disadvantages for the LS algorithm and the
iterative method in estimating the model parameters. For
the LS, it is sensitive to noise and fails to estimate pa-
rameters if the added noise is not white'”. Similarly, the
iterative method suffers from a convergence problem' .

The swarm intelligence algorithm has been proved to be
an efficient method for many global optimization prob-
lems and has been successfully applied to many areas. In-
spired by the hunting behavior and distribution mode of
the wolf pack, a new swarm intelligence algorithm, un-
cultivated wolf pack algorithm (UWPA), was developed
in Ref. [9]. Moreover, the convergence of UWPA was
proved in Ref. [10]. In this paper, a transmitter or a
spoofer and their wireless channels are modeled as Ham-
merstein models. Motivated by its successful applica-
tions, we put forward a novel approach of nonlinear sys-
tem identification by using the UWPA, which is stable,
convergent and robust. For the purpose of performance
comparison, experiments are also carried out using the
LS, the iterative method and the BA.

1 System Modelling

The block diagram of a typical spoofer or a satellite
transmitter is shown in Fig. 1. According to the structure
illustrated in Fig. 1, the nonlinearity distortion of the
transmitter is modeled as a memoryless nonlinear polyno-
mial"". It is sufficient to consider only odd terms be-
cause the frequency components produced by the even
terms are filtered out by RF bandpass filters'”. So, this
model is expressed as

x(n) =b,d(n) +byd(n) |d(n) |*+...+
b,,_,d(n) [ d(n) | =
Y budn) |dny |7 (h

where M is a positive integer; 2M — 1 is the order of the
polynomial; d(n) is the input signal; and b, is the polyn-
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Fig.1 Structure of a typical spoofer/transmitter
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omial coefficient.

The radio channel is modeled as a discrete-time linear
time invariant system'® . So, the channel can be regarded
as a FIR filter as follows:

N-1

y(n) = Y hx(n—k) +w(n)

k=0

(2)

where N is the order of the FIR filter; A, is the coefficient
of channel impulse response; w(n) is the additive Gaussi-
an white noise and w(n) ~ N(0, ¢°); y(n) is the re-
ceived signal.

Substituting Eq. (1) into Eq. (2), the whole system
can be written as

2i -

*d(n-k) +w(n)
(3)

Eq. (3) represents a Hammerstein model' = which is
composed of a static nonlinear block followed by a dy-
namic linear block. In a GNSS receiver, the transmitted
signal d(n) can always be acquired by demodulation and
dispreading once the received signal y(n) is available,
and thus the input and the output signal of Eq. (3) are
both accessible. Hence, the identification of this system
is feasible.

2 Uncultivated Wolf Pack Algorithm

N-1 M
y(n)= Y h Y b, |d(n-k
k=0 (=1

[12]

The advantages, components, basic theory and steps of
the UWPA are briefly introduced in this section and the
pseudo code of the UWPA is represented.

The UWPA is an evolutionary computation technique
which possesses superior performance in terms of accura-
cy, stability, convergence speed and robustness. It has
three artificial intelligent behaviors including scouting be-
havior, calling behavior, and besieging behavior and two
intelligent rules, i.e., the winner-take-all generating rule
for the lead wolf and the stronger-survive renewing rule
for the wolf pack. First, the scouting behavior accelerates
the possibility that the UWPA can fully traverse the whole
solution space. Secondly, the winner-take-all rule and the
calling behavior cause the wolves to move towards the
lead wolf whose position is the nearest to the prey. They
also cause wolves to arrive at the neighborhood of the
global optimum only after a few iterations have elapsed,
since the step in the calling behavior is the largest one.
Thirdly, with the smallest step, besieging behavior en-
sures the ability to open up a new solution space and care-
fully search for the global optimum in a good solution ar-
ea. Fourthly, with the stronger-survive renewing rule,
the algorithm obtains several new wolves whose positions
are near the lead wolf. Also, it allows for more latitude
of search space to find the global optimum, while main-
taining population diversity in each iteration.

The steps of the algorithm are described as follows:

Step 1 Initialization. Initialize the following parame-
ters: The initial position of wolf X;; the number of the
wolves N; the maximum number of evaluations k the

max ?

maximum repetition number in scouting behavior T ;
the step coefficient S; the distance coefficient w; and the
population renewal coefficient 8.

Step 2 The wolf with the best smell concentration is
regarded as the lead wolf. The rest of the N — 1 wolves
first act as the scout wolves to take the scouting behavior
until ¥, <Y, ,, where Y, is the smell concentration of prey
perceived by wolf i; or the maximum repetition number
T, is attained and then go to Step 3.

Step 3 Except for the lead wolf, the rest of the N — 1
wolves secondly act as the ferocious wolves and gather to-
wards the lead wolf according to

step, (G - X))

X o xt 4
| G*-X;

i i

(4)

where step, is the step size in calling behavior; G is the
position of the artificial lead wolf at the k-th iteration;
and X is the position of wolf i at the k-th iteration. If Y,
<Y, g0 back to Step 2; otherwise, the wolf i contin-
ues running until L(i, ) <L, where L, is the distance
determinant coefficient; then go to Step 4.

Step 4 The position of wolf who takes the besieging
behavior is updated according to

X" =X} + Astep, | G* - X (5)
where step, is the step length in besieging behavior; A is a
random number uniformly distributed at the interval [ —1,1].

Step 5 Update the position of the lead wolf under the
winner-take-all generating rule and update the wolf pack.

Step 6 If the program meets the precision requirement
or reaches the maximum number of evaluations, the position
and function value of the lead wolf, and the optimal solution

of the problem are outputted; otherwise, go to Step 2.
3 System Identification with UWPA

The approach of the system identification with UWPA
is represented in this section. Assuming that the number
of the polynomial coefficients is seven and the order of
the FIR filter is three, the real model parameters form a
feature vector and it is expressed as

0=[b1 bz bs b7 hl hz hs] (6)
and the estimated parameters are written as a vector
é:[lsl ]33 Bs 137 /’Al] flz /:13] (7

The objective of the identification of the Hammerstein
model is to find the optimal parameter vector to minimize an
objective function with the known input d(#n) and the output
data y(n). The objective function can be defined based on a
least-mean-square-error criterion (LMSE) as follows:

~ 1 - . o N2
RO =55 X |ytk=i) - 9(k-i) | (8)
where D is the signal sample length; y(k) is the true output;
and %(k) is the estimated output. The value of the objective
function is regarded as the smell concentration of prey.
Therefore, the identification of the model with UWPA is
transformed into a minimization problem of the MSE.
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4 Spoofing Interference Detection

Since the parameters have been estimated by the UW-
PA, we utilize a naive method for the detection of spoo-
fing, which directly compares the Euclidean distance be-
tween the estimated parameter vector and the real parame-
ter vector. The decision rule can be written as

A Hy,
[6-6,1 2166, (9)
1
where H, means that the received signal is a spoofing sig-
nal; H, means that the signal is a genuine GNSS signal.

5 Experiments

To demonstrate the identification performance of the
algorithms, simulations are carried out. We assume
that the GNSS signal is a GPS C/A signal and the
modulation method is QPSK. The parameters of the
nonlinear static block and the linear dynamic block are
set, as shown in Tab. 1. Suppose that the spoofing is
generated by a repeater. So, the spoofing signal is ver-
y similar to the genuine GNSS signal and the two vec-
tors of parameters in Tab. 1 are set to be very close to
each other.

Tab.1 Parameters configuration

Nonlinear subsystem

Linear subsystem

Coefficients

b, b, b, b, h, h, hy
Transmitter 1 ~0.013 5 ~0.008 6 -0.0017 0.990 6 0.062 8 0.007 9
Spoofer 1 -0.018 7 -0.005 3 -0.001 9 0.972 3 0.116 3 0.019 4

Suppose that the parameter vector @, comes from a GPS
transmitter and @, comes from a spoofer. Then the simi-
larity between them can be calculated by cosa =
(0,"0,)/ (16,1 16,]), where o is the angle between
the two parameter vectors. The cosine value of the angle be-
tween the two parameter vectors listed in Tab. 1 is 0.998 4
and the angle is 3.284 4°, which means a high similarity.

For the purpose of comparison, simulations are also ex-
ecuted using the LS algorithm, the iterative method and
the BA'™'. For each algorithm, 1 000 independent exper-
iments are conducted. The maximum iterative number of
the iterative method is 5 000. The maximum evaluation
number and the population size of the UWPA and the BA
are 5 000 and 50, respectively. The parameters of BA are
set as follows: the initial loudness A, = 1; the initial
emission rate r, =0.5; a=0.95; ¥ =0.9; and the fre-
quency range is [0,2]. The parameters of UWPA are set
as follows: the maximum repetition times in scouting be-
havior T, =20; the distance determinant coefficient w =
100; the step coefficient S =300; and the population re-
newal proportional coefficient 8 =3.

All the algorithms are tested in Matlab 2014a using the
same computer with a Dual-Core 2. 80 GHz processor, run-
ning Windows 7 operating system with over 4 GB of memory.

Tab. 2 shows the runtime of these four algorithms. The
runtime of the UWPA and BA is shorter than that of the
iterative method, because the iterative method does not
converge when it reaches the designated maximum num-
ber of iterations. The LS is the fastest one as it is a non-
iterative method. The runtime of the BA is shorter than
that of the UWPA since the UWPA has more intelligent
behaviors than the BA.

Tab.2 Runtime of four algorithms

Algorithms UWPA BA Iterative LS

Runtime/s 514.48 120.25 1207. 50 0.37

Fig. 2 illustrates the curves of the average relative error
(ARE) vs. SNR. The relative error can be calculated by
0.5C[E8,) -6,/ 16| +[E8)-6,1/16,]).
Not surprisingly, the AREs of these four algorithms de-

crease with the increase in SNR. The AREs of the LS ap-
proach and the iterative method are much greater than
those of the UWPA and the BA, because these two meth-
ods are much more sensitive to noise than the UWPA and
the BA. Moreover, the ARE of the UWPA is 0. 026 8
lower on average than that of the BA when SNR ranges
from 2 to 16 dB.
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Fig.2 Identification average relative error vs. signal to noise
ratio. (a) UWPA and BA; (b) Iterative and LS

Fig. 3 illustrates the curves of the GNSS spoofing detec-
tion rate vs. the SNR. The range of the SNR is set to be 2
to 16 dB. As expected, the detection rates of the UWPA
and the BA increase with the increase of the SNR, and
reach 1 when the SNR is 14 dB. However, the perform-
ances of the iterative method and LS are poor. In addition,
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the average detection rate of the UWPA is 4.93% higher
than that of the BA when the SNR ranges from 2 to 14 dB.
The reason is that the cooperation among the lead wolf,
scout wolves and ferocious wolves makes nearly perfect
predation. Additionally, the three artificial intelligent be-
haviors makes UWPA not only fully traverse the whole so-
lution space but also carefully search the global optimum
point in the feasible solutions area. Therefore, conclusion
can be drawn that the identification approach with the UW-
PA is much more effective, even for relatively low signal-
to-noise ratios where the iterative method and the LS ap-
proach failed to identify the spoofing signal.
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Fig.3 Detection rate vs. signal to noise ratio

6 Conclusion

In this paper, we propose a GNSS spoofing identifica-
tion approach based on the UWPA. The Hammerstein
model is employed for modeling the real GNSS transmit-
ter, the spoofer and the wireless channel. The experimen-
tal results show that the proposed method can obtain a
higher spoofing detection rate and less ARE than the BA,
LS and iterative methods. Our method can also work ef-
fectively on relatively low SNRs.
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