Journal of Southeast University (English Edition)

Vol. 33, No. 1, pp. 59 —63

Mar.2017 ISSN 1003—7985

Reliability analysis of structure with random parameters
based on multivariate power polynomial expansion

Li Yejun

Huang Bin

(School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China)

Abstract: A new method for calculating the failure probability
of structures with random parameters is proposed based on
multivariate power polynomial expansion, in which the
uncertain quantities include material properties,
geometric characteristics and static loads.
response is first expressed as a multivariable power polynomial
expansion, of which the coefficients are then determined by
utilizing the higher-order perturbation technique and Galerkin
projection scheme. Then, the final performance function of
the structure is determined. Due to the explicitness of the
performance function, a multifold integral of the structural
failure probability can be calculated directly by the Monte
Carlo simulation, which only requires a small amount of
computation time. Two numerical examples are presented to
illustrate the accuracy and efficiency of the proposed method.
It is shown that compared with the widely used first-order
reliability method ( FORM ) and second-order reliability
method ( SORM), the results of the proposed method are
closer to that of the direct Monte Carlo method, and it requires
much less computational time.
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structural
The structural

tructural reliability analysis is in general an important
S and computationally demanding task, which arouses
the interest of many scholars. Methods to compute the
failure probability is a basic research concern in structural
reliability analyses. According to the definition of failure
probability, estimating an integral equation is needed.
However, it is quite difficult or even impossible when the
dimension of multifold integral is large, or the perform-
ance function is highly non-linear and so on. Thus, in the
past decades, many methods have been presented to solve
the integral equation, such as the first-order reliability
method (FORM) and the second-order reliability method
(SORM)[H”, simulation methods” ™, etc.
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Among the above mentioned methods, the FORM and
SORM are the most common approaches for structural re-
liability analysis. However, they will be ineffective when
the limit state function is highly nonlinear or multiple
most probable points exist. As the most basic and direct
one of the simulation methods, the direct Monte Carlo
method (DMC) is accurate and commonly used to verify
newly proposed methods, but it is very time-consuming.
Thus, several improved methods, such as the importance
sampling method"”™" have been developed. Even so,
they generally require considerable computations.

For more complex reliability problems, stochastic finite
element methods have consequently been developed to es-
timate the response surface functions, e. g., the tradition-
al perturbation stochastic finite element methods ( PS-
FEM) """ the spectral stochastic finite element methods
(SSFEM) "™ " and the stochastic reduced basis methods
(SRBM) 171,

The PSFEM methods are widely used for stochastic se-
ries expansion. However, the random responses of struc-
tures may not be obtained if the uncertainty of random pa-
rameters changes from small to large or the relationship
between inputs and output gradually becomes nonlinear.
The SSFEM methods are highly accurate, but they often
require too much time on large problems'”. The SRBM
methods have comparable accuracy and need less time
compared with the SSFEM methods, but the selection of
the basic vectors needs more exploration.

Different from the existing methods, a novel method
for calculating the failure probability of structures is pro-
posed based on the improved recursive stochastic finite el-
ement method (IRSFEM). The IRSFEM was originally
developed for statistical moment analysis'*"”, in which
the high-order perturbation technique is used to determine
the initial coefficients of the multivariate power polynomi-
al expansion of the structural response. Subsequently, the
initial coefficients are modified by the Galerkin projection
scheme. After the structural response or performance
function is determined by means of the IRSFEM, the fail-
ure probability of the structures can be calculated by the
Monte Carlo simulation in accordance with the definition
of structural reliability. To evaluate the accuracy and effi-
ciency of the proposed method, two numerical examples
are investigated using the proposed method, as well as the
widely used FORM and SORM. Comparison results show
that the proposed method is the most accurate and has al-
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most the same accuracy as the DMC. Furthermore, the
proposed method is revealed to be far more efficient than
the DMC method.

1 Multivariable Polynomial Expansion Approach
1.1 Multivariable power polynomial expansion

To solve a static problem involved in a random vector
0 where the elements are 0,(i =1, 2, ..., n), an unknown
random response, Y(P, @), can be defined as the multi-
variable power series expansion, and it can be written as

Y(P,0) =C,(P)T,(6) + 2 c(pr, (e +
i=1
n i n i J
N Y (P, + Y Y Y Cu(PYT5(0) + ...
o1 j=1 i=l j=1 k=1
(D
where P is a coordinate vector of space position; C,(P),
C.(P), C,(P), ... are the coefficients of the correspond-

ing expanded terms; I'y(@), I',(0), I,(0),
the expanded power polynomial terms, and the first four

. denote

terms are shown as

F(0)=1
I,(0) =

Fl(o) =9,
1 j’ 1“3(t’) = 0i0j0k (2)

1.2 Recursive approach of static problem

The finite element equation of a structural system sub-
jected to static load can be written as

KY=F (3)

where K is an N x N dimensional structural stiffness ma-
trix including /, random variables; Y is an N x 1 dimen-
sional nodal displacement vector, as mentioned in Eq.
(1); F denotes an N x 1 dimensional equivalent nodal
load vector including /, random variables.

If the random field of elasticity modulus is defined as
the Karhunen-Loeve expansion, the stiffness matrix of the
random structure can be written as

1+,

K = 20 0K,

K =0 i=10+1,1L +2, .., +1, 4

where K, is an N x N dimensional deterministic matrix
with respect to the deterministic mean of the structural
0,=1.

The nodal load vector of the random structure can be
expressed as

matrix; K, refer to N x N dimensional matrices;

1+,

= zaiFi

i=0

F, =0 i=0,1,..1 (5)

where F refers to an N x 1 dimensional deterministic ma-
trix with respect to the deterministic mean of external
load; F, denotes N x 1 dimensional vectors.

Considering the first / + 1 terms of Eq. (1), and substi-

tuting Egs. (1), (4) and (5) into Eq. (3), we obtain

1+, 1+,

(Y 0K)Y(P.6) =3 6F, (6)

i=0

Since each term of the random vector @ should satisfy
Eq. (6), the sum of coefficients of the same order terms
based on multivariable polynomial expansion should be
equal to zero. Then, a series of deterministic recursive
equations can be determined by the high-order perturba-
tion technique. Following the above steps, the initial co-
efficients, C,(P), C(P), C,;(P), ..., of the displace-
ment vector can be obtained recursively.

1.3 Galerkin projection scheme

As the convergent rate of unknown random output can
be improved by the Galerkin projection scheme, the dis-
placement vector Y(P, @) is reassumed to be

1
Y(P,O) = vT, (7)
i=0
where y,(i=0,1,2, ..., [) are unknown modification co-
efficients; T,, T,, T,, ..., respectively, denote
C(P)T,(0), Y C(P)I(0), 2 Zc,,(P)r (0,
i=1
Then, using the Galerkin projection, the following

equation can be obtained:

1+, 1+,

1
> Y (0TKT, )y, = Y (6,T,F,)
j=0 i=0 i=0
g =01, .1 (8)
From Eq. (8), the unknown coefficients y,, v,, ...,

v, can be obtained easily.
2 Reliability Analysis of Random Structures
2.1 Definition of failure probability

Structural reliability is defined as the probability that a
structure or structural system performs its intended func-
tion during a specified period of time under stated condi-
To assess the reliability of a structure, a limit state
function or performance function A(@) should be estab-

tions.

lished as follows:
A(O) =

where @(P) is the capacity at failure at point P of the
structural system.

The failure probability P; can be estimated by a multi-
fold integral, as

O(P) -Y(P,0) (9)

Pf=f £0,, 0, ...0)d0,ds,..do,  (10)
A(O) <0

where f(6,, 6,, ..., 0,) is the joint probability distribu-
tion function of the random variables.

2.2 Calculation of multifold integral

Once A( ) is determined, the failure probability can be
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obtained through the Monte Carlo simulation, and the
proposed method is named IRSFEM-P.

With the explicit performance function A(@), the fail-
ure probability of the
directly as

structure can be estimated
M .
Y 0[A8") <0]

1

p oL
f

N (11)

where N, is the number of samples; 0" denotes the i-th
sample of the random vector @; (2[-] is defined as a
counting function such that when A(6"”) is in the failure
domain, (2[-] =1, otherwise (2[-] =0.

In order to illustrate the accuracy of the proposed meth-
od IRSFEM-P, the DMC method is carried out to verify
the proposed method. In the following, two numerical
examples are taken to check the effectiveness of the pro-
posed method.

3 Numerical Examples

Example 1  Consider a one-dimensional cantilever
beam subjected to two concentrated forces. One force is
located in the middle of beam, and the other is at the free
end, as shown in Fig. 1. The whole length L of the beam
is 6 m, and the beam is divided into 12 elements. It is as-

sumed here that the bending rigidity, EI, of the beams F,

and F, are all random. The means of EI, F,, and F, are
4 x10* kKN m’, 4 kN and 4 kN , respectively.

F F,

AN

Fig.1 Random cantilever beam

Assuming that EI, F,, F, are all of Beta distribution,
thus we have

EI=EI,(1+./56,8,), F, =F,(1+/56,8,)
F,=F,(1+/56,8,) (12)

where El, and F,,, F, denote the means of EI, F,, F,,
respectively; §,, 8, and §, are the coefficients of variation
(COVs) of EI, F,, F,, respectively. In addition, 6,(i =
1,2,3) are independent random variables with Beta distri-
butions, of which the probability density function is writ-
ten as
3 2
f(0)=Z(1—0) fe(-1,1) (13)
The failure probability of the random beam is computed
by four methods, i. e., FORM, SORM ( Breitung),
IRSFEM-P, and DMC. The results of the failure probabil-
ity calculated by these four methods are listed in Tab. 1.

Tab.1 The failure probability of the beam from different methods with §, =0.1, §, =0.2

8
Methods 0.05 0.1 0.15 0.2 : 0.25 0.3 0.35 0.4
FORM 8.734 x107* 6.531x107% 1.613x107% 3.408 x107% 5.722x107% 8.335x107% 1.104x10°" 1.370 x10 !
SORM(Breitung) ~ 4.442 x10°* 3.948 x107° 1.026 x 1072 2.443 x107°2 4.477 x107% 6.969 x 1072 9.707 x 102 1.249 x 10"
IRSFEM-P 2.500 x10°* 2.545x10°3 9.680 x10°3 2.275x1072 4.193x1072 6.525x10°2 9.203 x10°2 1.199 x 10!
DMC 2.500 x10"* 2.540 x10°% 9.690 x10 > 2.275x10°2 4.192x10°2 6.525x10°2 9.202x10°2 1.199 x 10!
Here it is assumed that §, (the coefficient of variation of 350 - B

EI) is equal to 0.1 and §,( the coefficient of variation of ........... 0.05

F,) is equal to 0.2, respectively, and &, ( the coefficient 300 - —m 0.15

of variation of F,) is supposed to be 0.05, 0.1, 0.15, - 0.25

0.2, 0.25, 0.3, 0.35 and 0. 4, respectively. The i AV 035

threshold value, @(86,, 6,, 6,), of the vertical displace- - ’5 “ )

ment at the end of the beam is assigned as 1.34 x 10~° = _l"_\'i_

m. It can be seen from Tab. 1 that the results of the IRS- = 150 L ;’ \‘i

FEM-P are the closest to that of the DMC, and SORM A 3

(Breitung) is more precise than FORM. To fully illus- 100

trate the effects of the random inputs on the statistical 3

properties of the random response, the curves of probabil- =

ity density function (PDF) of the response with the pro- 3

posed method are shown in Fig.2. It can be seen that the
PDF curves of the vertical displacement at the end of
beam vary with different 6, while 6, =0.1 and §, =0. 2.
It is also found that the increment of §, will result in the
large fluctuation of the vertical displacement, and there-
fore the failure probability increases as shown in Tab. 1.
Example 2 A random wedge under gravity and hy-
draulic pressure and its boundary conditions are shown in

0 0.005 0.010 0.015
Displacement of beam/m

Fig.2 PDF curves of the displacement at the end of beam with
various §; while §, =0.1 and §, =0.2

0.020

Fig. 3. The height, bottom width, thickness, Poisson ra-
tio and specific gravity of the wedge are 10, 8 and 1 m,
0.167 and 24 kN/m’, respectively. The density of water
is 10° kg/m3. The mean of elastic modulus, E, of the
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wedge is 2.2 x 10" kN/m’, and the wedge is divided into

100 finite elements. The proposed IRSFEM-P is used in
this example.

The exponential covariance kernel function of the
wedge is given as
CU(xp 1) (%)) =ate” 71 (14)
Y where ¢ is the mean square deviation of the elastic modu-
~- lus of the wedge. The variance of elastic modulus chan-
ges along with the height of the wedge and /=3 m.
Here, the first two terms of the Karhunen-Loéve ex-
pansion of elastic modulus of the wedge are taken. All in-
dependent random variables are considered to be of uni-
form distribution, and their probability density functions
can be expressed as f(9) =1/2, 0e( -1,1).
When the threshold value @(6,, 6,) of the horizontal
displacement at the top of the wedge is assigned as 9. 15
x 10> m, the failure probability of the wedge can be ob-
tained (see Tab.2). It can be seen that the proposed IRS-
FEM-P also has almost the same accuracy as the DMC
method. In order to explain some more detailed aspects
herein, some cases are chosen, as shown in Fig. 4.

Tab.2 The failure probability of the wedge from different methods
3
Methods
0.05 0.1 0.15 0.2 0.25
001 6 0.178 8 0.2919
.001 6 0.178 9 0.2920

Fig.3 Random wedge

IRSFEM-P
DMC

0.3 0.35 0.4
0.350 5 0.386 7 0.4120 0.429 8 0.4430

0.350 8 0.3873 0.413 1 0.432 1 0.447 5

o o

120F

IRSFEM-P 2.0
B IRSFEM-P
10 - g N DMC ol e DMC
[ ]

PDF/10*
(=)}

1.0F

PDF/10*

0 1 ! ! ‘ i 0 L x L |
75 80 85 90 95 50 100 15 200 250 300 350
Displacement of the wedge/um

Displacement of the wedge/jum
(a)

(b)
Fig.4 PDF curves of the displacement of the wedge with different §. (a) §=0.05; (b) 6§=0.4

Fig. 4 shows the PDF curves of the displacement of the
wedge with different § calculated by the proposed IRS- 4 Conclusions
FEM-P and the DMC. It can be seen that the output hori-
zontal displacements at the top of the wedge are not of
uniform distribution, and differ from each other for dif-
ferent coefficients of variation. Meanwhile, it is also ob-
served that the failure probability curves of IRSFEM-P are 2) Considering that the DMC is time-consuming, the
very close to that of DMC whether the Cov § is small or efficiency of the proposed IRSFEM-P is high.

large, which illustrates that the accuracy of the proposed 3) The proposed IRSFEM-P is competitive for use in
IRSFEM-P is very high. the reliability analysis of structures.

FEM-P is more efficient than DMC.

1) Compared with the widely used FORM and SORM,

the results of the proposed method are closer to that of the
direct Monte Carlo method.

Furthermore, the CPU time cost by the proposed IRS-

FEM-P (3.93 s) is only 1/600 of that of the DMC meth- References
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