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Abstract: In order to improve the accuracy of travel demand
forecast and considering the distribution of travel behaviors
within time dimension, a trip chaining pattern recognition
model was established based on activity purposes by applying
three methods: the support vector machine (SVM) model, the
radial basis function neural network (RBFNN) model and the
multinomial logit (MNL) model. The effect of explanatory
factors on trip chaining behaviors and their contribution to
model performance were investigated by sensitivity analysis.
Results show that the SVM model has a better performance
than the RBFNN model and the MNL model due to its higher
overall and partial accuracy,
advantage under a small sample size scenario. It is also proved
that the SVM model is capable of estimating the effect of
multi-category factors on trip chaining behaviors
accurately. The different contribution of explanatory factors to
trip chaining pattern recognition reflects the importance of
refining trip chaining patterns and exploring factors that are
specific to each pattern. It is shown that the SVM technology
in travel demand forecast modeling and analysis of explanatory
variable effects is practical.
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indicating its recognition

more

rip chaining behavior is the fact that residents always
T connect several activities with different purposes that
need to be done in a day within temporal and spatial con-
straints. Contrary to individual single trip behavior, trip
chaining behavior contains a series of space, time and ac-
tivity type information. Therefore, with the development
of the activity-based theory, there is much research that
emphasizes an analysis of which factors have effects on
trip chaining behaviors. For example, both Xianyu ! and
Li et al. ™' used the co-evolutionary logit model to capture
the interrelationship between the travel mode choice and
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trip chaining behavior, and the model results show that
activity decision or trip chaining behavior is made before
mode choice in most cases. Meanwhile, household char-
acteristics and personal attributes are also found signifi-
cantly influencing trip chaining behavior, such as house-
hold members’ work status””’, work schedule'’, gen-

der"!

, the presence of children'”, etc. In addition, the
built environment where people live and work is another
important factor, and its effects on trip chaining behaviors
have found their way into the diverse concepts of plan-
ning, design and policies'”™, such as a compact city,
transit-oriented development and mixed land use.
However, as a matter of fact, all aspects of factors
have influences on trip chaining behavior collaboratively,
rather than separately, which means all these factors need
to be carefully considered when studying trip chaining be-
havior. Furthermore, although works on the relationship
between factors and chaining behavior have obtained rich
results, there are few studies focusing on developing ef-
fective recognition models for trip chaining patterns. Giv-
en these circumstances, the primary objective of this pa-
per is to experiment with different technologies to recog-
nize residents’ trip chaining behavior, particularly to in-
vestigate the potential capability of using the support vec-
tor machine (SVM) algorithm, which is new data-mining
technology. Specifically, the study includes the following
tasks: comparing the recognition performance of statisti-
cal and machine learning methods; evaluating the impact
of those possible explanatory variables on trip chaining
choice behavior and comparing the results between differ-
ent methods and putting forward some predictor selection
improvements for forecast models’ accuracy.

1 Methodology
1.1 The SVM model

The SVM model is an advanced technology of data
mining based on the statistical learning theory and the
structural risk minimization principle'”, which is capable
of approximating linear and nonlinear relationships'".
Through constructing an optimal hyper-plane with kernel
functions, the SVM model can change a nonlinear prob-
lem into a linear problem and then realizes its regression
or classification function. Clearly, trip chaining pattern
recognition should be treated as a classification problem in

this paper. There are usually four main steps for process-
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ing recognition.

1) Sample division: The complete data samples are
randomly divided into two subsets, which are a learning
subset and a holdout subset.

2) Training model: The trip chaining pattern recogni-
tion SVM model is trained based on the learning subset to
obtain structural parameters.

3) Recognition: The SVM model uses these structure
parameters again but it is fitted by the explanatory varia-
bles of the holdout subset. In this way, the trip chaining
patterns for each sample (individual) in holdout subset
can be recognized.

4) Evaluation: The performance of the SVM model
can be measured via checking whether the recognized trip
chaining pattern matches the real trip chaining pattern for
each sample (individual).

1.2 Grid-search and 10-fold cross-validation

Generally, there are structural parameters that need to
be calculated for optimizing the SVM performance, for
example, the penalty factor that determines the trade-off
between the complexity of model and training errors and
the parameter in the kernel function. The radial basis ker-
nel function is used in this paper. A combination of grid-
search and cross-validation is applied to calibrate these
parameters.

10-fold cross-validation is an effective experimental
method to estimate generalization error in a pattern recog-
nition problem in the training model. It subdivides the
learning set into 10 subsets, and each subset is tested u-
sing the SVM model and trained on the remaining nine
subsets sequentially, thus ten-time trainings are pro-
cessed. After averaging the percentages of samples that
are correctly recognized in all trainings, the cross-valida-
tion accuracy can be obtained.

The grid-search method specifies a plane which is the
scope of two-dimensional parameters. Through setting up
the search step length of parameters, the plane is parti-
tioned into a number of grids, which represent various
pairs of parameters. Each pair of parameters is taken into
the cross-validation process, after searching all grids in
the plane, the pair with the best cross-validation accura-
cy, namely the pair of optimal parameters, is deter-
mined.

1.3 Methods for comparison purpose

In order to verify whether the SVM model has the ad-
vantage of recognizing trip chaining patterns, another two
methods are selected for comparison purpose, which are
the multinomial logit (MNL) model and a typical three-
layer framework of the radial basis function neural net-
work (RBFNN) model. Since the MNL model produces
probability of each trip chaining pattern, the pattern with
the highest probability should be selected, and then the

recognition function of the MNL model can be calculated.
2 Data Source

The original data for this paper was collected from the
2013 Nanjing resident trip survey, which was conducted
in the main city area of Nanjing consisting of 495 traffic
analysis zones ( TAZs) according to the street and admin-
istrative divisions. Above six-year-old residents were
asked to provide individual characteristics, household
characteristics, and all one-day trip information on Octo-
ber 30th, 2013. Initially, a total of 2 000 household at-
tributes and 5 932 residents’ personal characteristics and
travel information were collected. Samples with missing
information and logical issues was excluded. Finally,
1 701 households’, 3 118 residents’ information was se-
lected in this study.

According to Ref. [2], the trip chaining behavior is
usually defined as a sequence of trips that occurs on a
complete day which starts and ends at home. Thus, three
major trip chaining patterns and five detailed trip chaining
patterns are given in Tab. 1. They are described as fol-
lows:

® HW + WH denotes that there are only subsistence ac-
tivities (such as working, school, and business) within a
day. It may contain one commuting activity stop, HWH,
or more than one stops, HW + H.

® HO + OH denotes that there are only non-subsistence
activities ( such as shopping, entertainment, visiting
friends, and picking up/dropping off) within a day. It
may contain one non-commuting stop, HOH, or more
than one stops, HO + H.

e HW + OH denotes that this chaining pattern is a
combination of a subsistence chain and a non-subsistence
chain with at least two stops.

Tab.1 Description of trip chaining patterns

Major Patterns Detail patterns Sample
. . . Percent/ %
description description size
HWH 1 862 59.7
HW + WH
HW +H 148 4.8
HOH 531 17.0
HO + OH
HO +H 253 8.1
HW + OH HW + OH 324 10.4

Tab. 2 reports all explanatory variables for model speci-
fication, including three aspects: trip information, per-
sonal and household characteristics and land use charac-
teristics. Of the trip information, travel mode choice is
divided into two types, which are single-mode and multi-
modes. The former denotes that a person finishes all trips
only by one mode, while the latter denotes two or more
modes. Transfer times sum the count of transfer in each
trip. Road network saturation reflects the average traffic
saturation of traffic analysis zone where residents live.
information of

Land use characteristics show

residents’ dwelling environments.

some
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Tab.2 Explanatory variables for model development

Factor category Variables Description Sample size Percent/ %
Average duration/min Numeric ( continuous) 31.6 (Mean)
Transfer times Numeric ( count) 0.05 (Mean)
Road network saturation Numeric ( continuous) 0.67 (Mean)
Trip information . No 1935 62.1
Crossing group travel
Yes 1183 37.9
. Single-mode 2 808 90.1
Mode choice .
Multi-modes 310 9.9
Male 1 539 49.4
Gender
Female 1579 50.6
Employee 2 036 65.3
Job Self-employed 295 9.5
Retired 787 25.2
15 to 29 years old 510 16.4
. Age 30 to 49 years old 1468 47.1
Personal attributes
=50years old 1 140 36.6
. . Yes 2 626 84.2
Public card possession
No 492 15.8
. . Yes 1452 46.6
Car license possession
No 1 666 53.4
. High school or lower 1517 48.7
Education .
college or higher 1 601 51.3
Yes 1 186 38.0
Head of household
No 1932 62.0
o <3 2373 76.1
Family size
>3 745 23.9
o No 2 632 84.4
Child in household
Yes 486 15.6
- . No 1 478 47.4
Household characteristics Cars ownership
Yes 1 640 52.6
. . No 902 28.9
Bikes ownership
Yes 2216 71.1
. . No 929 29.8
Ebikes ownership
Yes 2 189 70.2
<10° yuan/year 1732 55.5
Income
=10° yuan/year 1 386 44.5
Population density/( persons - km ~2) Numeric ( continuous) 15.3 (Mean)
. Employment density/( jobs - km ~?) Numeric ( continuous) 7.4 (Mean)
Land use characteristics
L No 911 29.2
Living in center area
Yes 2207 70.8

3 Results

In this paper, the SVM model, as well as the MNL
model and the RBFNN model, was experimented on ten
times with different learning and holdout sets with the ra-
tio of 4: 1 randomly, in order to reduce the bias when
producing the random separation of the whole dataset.
The SVM toolbox developed by Chang et al. "' was used
to specify the SVM model whose parameters were opti-
mized by the grid-search approach. The MNL model and
the RBFNN model were fitted using the SPSS software
packages.

These recognition models’ performance is investigated
from two sides: overall accuracy and partial accuracy.
The former is defined as the proportion of all-class that

recognized actually in the whole holdout sets, while the
latter focuses on the proportion of each class that recog-
nized actual accounts for every class of patterns in the
holdout sets.

3.1 Accuracy assessment and comparison of recognition
performance

The partial recognition performance is represented by
the confusion matrix,
measures: the precision P for one trip chaining pattern X
denotes the proportion of recognized trip chaining pattern
X that correctly reflects trip chaining pattern X; the recall
R for one trip chaining X denotes the proportion of real
trip chaining pattern X that correctly recognizes the trip
chaining pattern X. For comparison purposes, all ten ex-

which contains two evaluation
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perimental results produced by the three models were
summarized into one confusion matrix as shown in Tab. 3
and Tab. 4.

For major trip chaining pattern recognition, it is clear
that, of the recall percentage, all models have good per-
formance in identifying the HO + OH trip chaining pat-
tern. Compared with the MNL model and the RBFNN
model, the SVM model performs much better in recog-
nizing the HW + OH trip chaining pattern. Of the preci-
sion, all models have more than 75% percentage, except
that the precision of the MNL model for HO + OH is less
than 30% . For detailed five-category trip chaining pat-
terns, the SVM model, the MNL model and the RBFNN
model experience great difficulty in identifying the trip
chaining pattern of HW + H. However, the recognition

performance of the SVM model is higher in terms of pre-
cision and recall percentages than those of the other two
models.

Although Tabs. 3 and 4 provide much information
about the performance of different models, in order to de-
termine their effectiveness, we compare all the models by
using F-measure "', which takes both the precision and
recall percentages into consideration and it is computed as

_2PR
"P+R

(1

The F-measure values in Tabs. 3 and 4 indicate that the
SVM model performs better than the MNL model and the
RBFNN model in terms of different trip chaining divisions
and patterns.

Tab.3 Confusion matrix for the three models developed for recognizing the three major trip chaining patterns

Actual trip

Recognized trip chaining pattern

Model L. R/ % F
chaining pattern HW + WH HO + OH HW + OH
HW + WH 3825 114 56 95.74 0.93
SYM HO + OH 123 1473 8 91.83 0.91
HW + OH 264 38 329 52.14 0.64
P/ % 90. 81 90. 65 83.72
HW + WH 617 3371 7 15.44 0.26
HO + OH 28 1575 1 98.19 0.45
MNL
HW + OH 31 497 103 16.32 0.28
P/ % 91.27 28.94 92.79
HW + WH 3767 193 35 94.29 0.90
HO + OH 186 1402 16 87.41 0.86
RBFNN
HW + OH 419 43 169 26.78 0.40
P/ % 86.16 85.59 78.82

Tab.4 Confusion matrix for the three models developed for recognizing detailed three trip chaining patterns

Actual trip

Recognized trip chaining pattern

Model .. R/ % F
chaining pattern HWH HOH HW + H HO +H HW + OH
HWH 3527 102 1 1 51 95.79 0.89
HOH 100 941 0 30 0 87.86 0.75
SVM HW +H 295 13 0 0 5 0
HO +H 19 366 0 139 9 26.08 0.39
HW + OH 269 23 2 13 324 51.35 0.64
P/ % 83.78 65.12 0 75.96 83.29
HWH 695 2726 0 238 23 18.88 0.31
HOH 28 947 0 96 0 88.42 0.34
MNL HW + H 16 248 0 47 2 0
HO +H 1 336 0 192 0 36.02 0.28
HW + OH 38 219 0 271 103 16.32 0.27
P/ % 89.33 21.16 22.75 78.03
HWH 3522 125 0 1 34 95.65 0.87
HOH 160 902 0 6 3 84.22 0.69
HW +H 281 28 0 0 4 0
RBFNN HO +H 55 442 0 14 22 2.63 0.05
HW + OH 435 32 0 1 163 25.83 0.38
P/ % 79.09 58.99 63. 64 72.12

In addition to partial accuracy, the average overall ac-
curacy of all experiments is also compared. For major trip
chaining patterns, the average overall accuracy of the
SVM model, the MNL model and the RBFNN model are
90.32% (0.010 6 ), 36.84% (0.024 8), 85. 68%

(0.016 1), respectively, which in parentheses are stand-
ard errors. For detailed trip chaining patterns, the average
overall accuracy of the SVM model is 79. 15% (0. 016
5), the MNL model’s is 31.09% (0.033 4), and the
RBFNN model’s is 73.85% (0.019 0). The result clear-
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ly shows that the SVM model outperforms another two
models no matter how the trip chaining patterns are divid-
ed and the lower standard deviation demonstrates that the
outcomes of the SVM model are more stable. In conclu-
sion, it is effective to use the support vector machine
learning technique to produce acceptable and accurate out-
comes in trip chaining pattern recognition.

3.2 Analysis of effects of explanatory variables

Although the SVM model performs well in terms of
partial accuracy and overall accuracy, impact evaluation
of explanatory variables is a common problem in machine
learning methods, such as the SVM model and the neural
network model, due to their “black-box” mechanism.
However, inspired by Refs. [10, 14], the one-dimension-
al sensitivity analysis of the SVM model is conducted in
this study to investigate the relationship between trip chai-
ning behavior and various explanatory variables. Each ex-
planatory variable fitted in the SVM model is perturbed
by increasing one unit change with other variables remai-
ning unchanged, and then the proportion change of trip
chaining patterns is estimated by comparing the SVM’s
recognition result before and after the perturbation. Fur-
thermore, because there are 21 explanatory variables, the
sensitivity degrees caused by all the variables are ranked
from the maximum variation to the minimum variation.
Sensitivity degree is defined as the sum of absolute value
of probability changes of all-category trip chaining pat-
terns. Each variable’s sensitivity degree is then used to
calculate its contribution that accounts for the whole SVM
model sensitivity degree gross, and only these ranked var-
iables whose accumulative contribution proportion is
above 95% are concerned as illustration. Meanwhile, the
marginal effect of each input variable on each trip chai-
ning pattern was also estimated using the MNL model,
for comparison between machine learning and statistical
models.
3.2.1 Sensitivity analysis result of the SVM model
for three major trip chaining patterns

Sensitivity analysis results of the SVM and the MNL
models for three major trip chaining patterns are presented
in Fig. 1. Only two explanatory variables, which are
mode choice and job, have the accumulative sensitivity
proportion occupancy above 95% (96.97% ). As shown
in Fig. 1, the SVM model and the MNL model produce a
similar results for the variable of mode choice, however,
they produce opposite results for the variable of the job.
In order to further explore and explain underlying rea-
sons, the proportion of three chaining patterns grouped by
different mode choice and jobs based on the complete data
are plotted respectively in Fig. 2.

For mode choice, if an individual changes his/her
mode type from single-mode to multi-modes, he/she sel-
dom makes the complex subsistence-related trip chain of
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Fig.1 Comparison of the SVM and the MNL models regard-
ing the impacts of mode choice and job on major trip chaining

patterns. (a) Mode choice single to multiple; (b) Job employee to
self-employed; (c) Job employee to retired

HW + WH (the proportion of HW + HW chaining pattern
decrease from 69.4% to 19.4% .) but tends to make a
mixed trip chain of HW + OH ( the proportion of HW +
OH chaining pattern increase from 5.2% to 57.7%).
Both the SVM and the MNL models captured the signifi-
cant changes. However, according to Fig.2, people who
use multi-modes will not like to make the trip chain of
HO + OH (the proportion of HO + OH chaining pattern
decrease slightly by 2. 5% when comparing people who
use multi-modes with who use single-mode), two models
cannot reflect the subtle probability change of the HO +
OH pattern, and even the MNL model has positive
change which is not accurate.

For the job, it is not difficult to find that the MNL
model keeps the similar trend no matter how an
individual’s job changes, and clearly the sensitivity result
of the MNL model is much more significant than the
SVM’s. However, the sensitivity result of the SVM model
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is only consistent with the MNL’s when an individual’s
job changes from employee to being retired. If someone’s
job changes from employee to self-employed, two models
show the opposite result. From Fig. 2, it seems that the
SVM offers more accurate sensitivity. When comparing
an individual whose job is self-employed with the one
whose job is employee, the former tends to make a little
more trip chaining behavior of HW + WH (84. 1% vs.
83.4% ), which corresponds to the positive change in
proportion of HW + WH as displayed in Fig. 1, but
makes a little less trip chaining behavior of HO + OH
(2.7% vs. 3.3%), which corresponds to the negative
change of proportion of HO + OH as is also displayed in
Fig. 1. Therefore, the SVM model has the capability of
capturing the interrelationship among multi-category ex-
planatory variables particularly when the difference be-
tween each category is imperceptible.
3.2.2 Sensitivity analysis result of the SVM model
for five detailed trip chaining patterns

The SVM model for five detailed trip chaining patterns
was also analyzed by sensitivity calculation. There are six
explanatory variables, mode choice, job, average travel
duration, family size, transfer times and population den-
sity, which make the accumulative sensitivity occupancy
extend beyond 95% (95.54% ). Also, the variables of
mode choice and job that are the two most sensitive varia-
bles are regarded as examples for interpreting the results.

By exploring the description in Fig.3 and Fig. 4, what
should be noted is that generally sensitivity estimated by
the SVM model is only suitable for analyzing the impact
of explanatory variables on trip chaining patterns of HWH
and HW + OH as the number of trip chaining pattern clas-
sification increases. However, the SVM model can still
produce more accurate sensitivity for the patterns of HOH

and HO + H when analyzing multi-category explanatory
variables such as the variable of job. The impact of varia-
bles, mode choice and job types, on trip chaining pattern
of HWH and HW + OH, conducted by the SVM model is
consistent with the estimation of the MNL model. How-
ever, the SVM model fails when investigating the impact
of explanatory variables on the trip chaining pattern of
HW + H; that is, no matter how much the variables
change, the proportion of HW + H in the SVM model
recognition output will not change, indicating that none
of the explanatory variables used in this paper can influ-
ence this type of trip chaining behavior. This unexpected
result may be due to the minimum sample size of HW + H
in the complete data and the fact that the SVM model suf-
fers from a multi-class classification problem. Conse-
quently, it can be concluded that when conducting the
analysis on explanatory variable impacts, various methods
need be applied not only for comparison but also for ob-
taining more reliable results.
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Fig.3 Comparison of the SVM and the MNL models regard-
ing the impacts of variables of mode choice and job on detailed
trip chaining patterns. (a) Mode choice single to multiple. (b) Job
employee to self-employed. (c) Job employee to being retired

3.3 Analysis of explanatory variables’ contribution to
model recognition performance

During the sensitivity analysis, the percentage change of
the SVM models’ recognition accuracy also based on the
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complete dataset is recorded, as shown in Tab.5 and Tab. 6.

For the major trip chaining pattern model, it shows that
job and mode choice greatly aid the improvement of the
model’s overall accuracy performance, while other varia-
bles make little contribution.
patterns, only transfer times and job are significantly
helpful for HW + WH pattern recognition accuracy. All
of the variables improve the HO + OH patterns recognition
accuracy, but most of them are much too small. Mode

Of specific trip chaining

choice makes a great contribution to improving the accu-
racy of the HW + OH pattern by 49. 07% . Conversely,
the mode choice variable has a negative effect on HW +
WH patterns recognition accuracy. This is consistent with
the actual data. For example, most people whose trip
chaining patterns are HW + WH and HO + OH always
travel by single mode,
chaining pattern is HW + OH take multi-modes, which
may cause the model difficulty when recognizing the pat-
terns of HW + WH or HO + OH when one person travels
by single mode.

while more people whose trip

Tab.5 Predictor contributions to the recognition performance of the SVM model for major trip chaining patterns

Factor . Variable importance/ %
Variables
category For overall For HW + WH For HO + OH For HW + OH
Average duration 0.3207 0.096 5 0.959 4 1.2345
- Transfer times 0.673 5 0.9423 0.576 8 0.308 6
P Road network saturation 0 ~0.003 0 0.449 2 0
information
Crossing group travel 0.0321 -0.003 0 0.449 2 0.308 6
Mode choice 4.3297 -1.246 9 0.576 8 49.074 1
Gender 0.064 2 -0.003 0 0.576 8 0.308 6
Job 5.5805 5.867 6 4.7859 6.790 1
Age 0 0.046 7 0.449 2 -0.308 7
Personal . .
. Public card possession 0.032 1 -0.003 0 0.449 2 0.308 6
attributes
Car license possession 0.096 2 0.046 7 0.576 8 0.308 6
Education 0.032 1 -0.003 0 0.449 2 0.308 6
Head of household 0.032 1 0.046 7 0.449 2 0
Family size 0.064 2 0.046 7 0.449 2 0.308 6
Child in household 0.096 2 0.096 5 0.449 2 0.308 6
Household Cars ownership 0.096 2 0.096 5 0.449 2 0.308 6
characteristics Bikes ownership 0 -0.003 0 0.449 2 0
Ebikes ownership 0.0320 -0.003 0 0.3217 0
Income 0.032 1 -0.003 0 0.449 2 0.308 6
Population density -0.096 2 -0.102 5 0.3217 0
Land use .
L Employment density 0.032 1 -0.003 0 0.449 2 0.308 6
characteristics
Living in center Area 0 -0.004 8 0.449 2 0

For the detailed trip chaining pattern model, the recog-
nition performance change becomes much more complex.
Similar to the major trip chaining pattern model, job and
mode choice still have significant positive effects on over-
all recognition accuracy. Meanwhile, more variables
shows slight contribution to overall recognition accuracy
such as average duration, transfer times, education, fam-
ily size, e-bike ownership and population density. Inter-
estingly, some of these predictors show the opposite im-
pact on different types of trip chaining patterns. For ex-
ample, the variable of mode choice has a positive impact

on recognizing HW + H and HW + OH patterns, but it af-
fects HWH and HO + H patterns negatively. Besides,
more predictors selected in this paper are not able to help-
fully recognize the pattern of HW + H, and with the in-
crease of categories being divided, fewer variables dem-
onstrate positive effects on the recognition of the HW +
OH pattern,
changed no matter how the trip chaining patterns are di-
vided.

In summary, two conclusions can be drawn: different
explanatory variables may be specific to trip chaining pat-

although its absolute sample size is un-
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terns and their sub-division influences the contribution to
recognition performance. Therefore, it can be said that
trip chaining patterns should be divided extensively and

the explanatory variables’ effects must be determined

carefully.

Tab.6 Predictor contributions to the recognition performance of the SVM model for detailed trip chaining patterns

Factor

Variable importance/ %

Variables
category For overall For HWH For HW + H For HO + H For HW + OH
Average duration 1.2829 0.0537 -1.1300 16.205 5 1.2345
- Transfer times 0.859 6 1.396 3 0.188 3 0 0
o Road network saturation 0.032 1 0 0.188 3 0 0
information
Crossing group travel 0.096 2 0.053 7 -0.376 7 1.5810 0
Mode choice 5.4522 -1.074 2 4.519 8 -0.3953 51.5432
Gender 0.160 3 0.0537 0.7533 0 0
Job 4.714 5 5.5853 5.649 7 1.976 2 2.46 91
Age 0.096 2 0.0537 0.376 6 0 0
Personal . .
. Public card possession 0.128 3 0.053 7 0.376 6 0.3952 0
attributes
Car license possession 0.032 1 0.053 7 0.188 3 -0.3953 0
Education 0.224 5 0.107 4 0 1.976 2 0
Head of household 0.096 2 0.0537 -0.188 3 1.5810 -0.308 7
Family Size 0.160 3 0.0537 -0.188 3 -0.023 8 0
Child in household 0 0.0537 5.8117 0 0
Household Cars ownership 0.128 3 0.0537 -0.376 7 1.5810 0.308 6
characteristics Bikes ownership 0.160 3 0.107 4 -0.188 3 1.5810 0
Ebikes ownership 0.352 8 0.107 4 0.376 6 2.766 7 0
Income 0.064 1 0 0.1883 0 0.308 6
Land Population density 0.384 8 0.107 4 -0.941 6 5.5335 0.308 6
anc use Employment density 0.032 1 0.053 7 ~0.188 3 0 0.308 6
characteristics
Living in center area 0.032 1 0.053 7 0 0 0
4 Conclusion References

This paper demonstrates the underlying significance of
developing a trip chaining pattern recognition model, and
also explores the potential benefits of using the SVM
model with its classification function to recognize trip
chaining patterns. The SVM model shows better perform-
ance than the MNL model and the RBFNN model. In ad-
dition, the sensitivity analysis of the SVM model can
evaluate the effects of explanatory variables on trip chai-
ning behavior because the SVM model can produce more
reliable results. Meanwhile, the contribution of different
factors is summarized, which provides some thoughts on
how to improve model performance.

Despite the insights observed and trials tested in this
study, there is still some further research that needs to be
considered. For instance, the enhancement to data availa-
bility and quality, and the extraction of effective variables
can help complement and distinguish different trip chai-
ning pattern characteristics. Some underlying truths
should be excavated by considering several explanatory
variables simultaneously if a more deliberate sensitivity
analysis is conducted. A more sophisticated statistical
method should be used for elaborate comparison. Future
studies that consider these limitations will lead to more
accurate forecasting for residents’ trip chaining behavior,
and will be helpful for transportation planning and man-
agement.
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