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Abstract: To address the problem that a general augmented
state Kalman filter or a two-stage Kalman filter cannot achieve
satisfactory positioning performance when facing uncertain
noise of the micro-electro-mechanical system (MEMS) inertial
sensors, a novel interacting multiple model-based two-stage
Kalman filter ( IMM-TSKF) is proposed to adapt to the
uncertain inertial sensor noise. Three bias filters are developed
based on different noise characteristics to cover a wide range
Then,
calculated by the interacting multiple model algorithm to
Thus, the vehicle positioning
system can achieve good performance when suffering from
The experimental results
indicate that the average position error of the proposed IMM-
TSKF is 25% lower than that of the general TSKF.
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of noise levels. an accurate estimation of biases is

correct the bias-free filter.

uncertain inertial sensor noise.

he last two decades have witnessed an increasing
T trend in using integrated INS/GPS systems for vehi-
cle positioning. Kalman filtering is traditionally used to
fuse the information from both INS and GPS. In order to
employ INS in mass-market applications, the industry has
been directed toward using the micro-electro-mechanical
system (MEMS) based INS. However, in a number of
practical situations, the uncertain noise of MEMS INS
may seriously degrade the performance of the filter or
even cause the filter to diverge'". A general approach to
solve this problem is to treat the noise variables as parts
of the system state and then estimate them together with
it. This will lead to an augmented state filter whose im-
plementation can be computationally intensive. To main-
tain the computational cost at a lower level, the idea of
using a two-stage filter to implement an augmented state
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filter was introduced'". The idea is to decouple the aug-
mented filter into two parallel reduced-order filters. The
first filter, the bias-free filter, is based on the assumption
that the noise of MEMS inertial sensors is non-existant
and the state vector is only comprised of navigation pa-
rameters (i.e., position, velocity, attitude, or their er-
rors). The second filter, the bias filter, produces an esti-
mation of the bias vector, which is composed of noise
variables. The output of the first filter is then corrected
with the output of the second filter.

It is well known that the successful use of the Kalman
filter is greatly restricted by the strict requirements on a
priori statistics information of the process and measure-
ment noises'”. These are specified in the form of process
noise and measurement noise covariances, i.e. matrix Q
and matrix R, respectively. Usually, the specification of
matrix R can be directly derived from the accuracy char-
Meanwhile, the
specification of @ is often attempted in a trial-and-error
approach and considered to be constant'’. However, due
to the high uncertainty of the inertial sensor noise, the co-
variances of accelerometer biases and gyro drifts are diffi-
cult to determine and the specification of constant covari-
ances might not be sufficient to provide an accurate filter
performance. The adaptive KF ( AKF) is one of the strat-
egies to improve the estimation of the covariance matrices
based on innovation. Usually, the AKF adjusts the covar-
iance matrices through scale factors'*™ . The major prob-

acteristics of the measurement device.

lem is that it is very difficult to choose an optimal scale
factor. Even small changes in the scale factor may greatly
affect filtering performance.

Over the past few years, the interacting multiple model
(IMM) -based methods have been applied to vehicle posi-
tioning'*". In these studies, the possible vehicle driving
patterns are represented by a set of models, which are
generally established according to different maneuvering
or driving conditions. The IMM algorithm is used to cal-
culate a weighted sum of the individual estimates from

8
each model™

. In our research, its capability to represent
the noise behavior with different levels has been found to
be useful to obtain more precise bias estimation.

In this paper, we aim at developing a novel vehicle po-

sitioning methodology which can adapt to uncertain iner-
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tial sensor noise. A structural adaptation approach based
on the IMM algorithm provides a soft switching between
the filters with different Q matrices, which indicates dif-
ferent noise levels. Moreover, the structure of the two-
stage filter makes it possible to only adjust the filter in-
volved with accelerometer biases and gyro drifts. Thus,
the computational load can be reduced to a large extent.
The proposed IMM-based two-stage Kalman filter (IMM-
TSKF) can significantly improve the robustness of the ve-
hicle positioning system when facing uncertain inertial
sensor noise. The performance comparison between the
proposed IMM-TSKF methodology and a general two-
stage Kalman filter (TSKF) approach is demonstrated.

1 Overview of Proposed Methodology

To achieve the target of adapting the uncertain noise of
inertial sensors, a novel positioning methodology, termed
as IMM-TSKEF, is proposed for the INS/GPS integrated
positioning system. For further clarification, the whole
mechanism and functionality of the proposed positioning
methodology is illustrated in Fig. 1.
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Fig.1 Diagram of the proposed positioning methodology

According to Fig. 1, the structure of the two-stage filter
is adopted to fuse the information of GPS and INS. The
state vector of the bias-free filter is composed of nine nav-
igation parameters, while the accelerometer biases and
gyro drifts are included in the state vector of the bias fil-
ter. Due to the high uncertainty of MEMS INS noise, the
covariances of biases and drifts are difficult to determine.
Therefore, three bias filters are developed based on differ-
ent noise characteristics to cover a large range of noise
level, i.e., bias filter 1 for a high noise level, bias filter
2 for normal noise level, and bias filter 3 for low noise
level. Finally, the errors of the bias-free filter can be cor-
rected by a weighted sum of the three bias filters, and
thereby achieve accurate vehicle positioning. Compared
with the conventional two-stage Kalman filter or the aug-
mented state Kalman filter, the proposed methodology is
robust to uncertain MEMS INS noise.

2 Proposed IMM-TSKF Algorithm

According to INS mechanization, the dynamic error

model of the INS navigation parameters (i.e., position,
velocity and attitude) can be described as'

AP =D AP + D,AV"
AV' =f" x " - CAw). + Aw!) x V" -
Q. +w]) X AV" +Ch Af*

¥' = Ao + Ao, - (@) + @,) X" - ClAw, (1)
where AP =[AL AXx Ah]" is the position error vector
(latitude, longitude, height); AV" = [AV, AV,
AVU]T is the velocity error vector ( east, north, up);
'J’n =[¢: Py
the ideal strapdown matrix; e, is the angular rate vector
of the rotation of the earth relative to the inertial frame;

Y1 is the attitude error vector; C is

w,, is the angular rate vector of the rotation of the naviga-
tion frame relative to the earth; f" and V" are specific
force and velocity vectors in the navigation frame, re-
spectively; Af’ and Aw}, are accelerometer biases and gy-
roscopes drift vectors in the body frame, respectively; D,
and D, are two 3 x 3 matrices, in which the non-zero ele-
ments are functions of the vehicle’s latitude and height.

The state vector of the bias-free filter is composed of
nine navigation parameter errors (i. e., position error, ve-
locity error, and attitude error), as follows:

X=[AL Ax Ah AV, AVy AVy 4 ¢y ¢yl
(2)

In this paper, the second-order autoregressive ( AR)
model is chosen as the error model for accelerometer bia-
ses (V,, V,, V.) and gyro drifts (¢,, &,, ¢.). The Burg
estimation method"'” is applied to determine the parame-
ters of the AR model. The second-order AR model for a
discrete-time domain sequence can be described by the
following difference equation''":

y(n) = —ay(n-1) —a,y(n =2) +Byw(n) (3)

where y(n) denotes the observation of the time series; «,
and «, are the model parameters; and B, is the standard
deviation of the sensor white noise.

It can be seen that for each inertial sensor, the second-
order AR model produces two state variables and two co-
efficients that describe the model. Thus, the state vector
of the bias filter can be described as

U=[V, Vyl V. ey &y €y V. Vyz V. €, Ep 3:_2] !
(4)
Based on Eq. (1) and the inertial sensor residual mod-

el, the discrete-time system state equation of the two-
stage Kalman filter can be presented as''”!

X(k+1) =A(k)X(k) + B(k)Uk) + W(k) (5)
Uk +1) =C(k)U(k) + WY (k) (6)
where A(k), B(k), and C(k) are the state transition ma-

trices; W*(k) is the system noise vector of the bias-free
filter with covariance matrix Q* (k); and W' (k) is the
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system noise vector of the bias filter with the covariance
matrix QU( k).
The measurement equation can be expressed as

Y(k) =H(k)X(k) +D(k)U(k) +n(k) (7)

where Y (k) is the measurement vector, which is com-
posed of the differences between the INS measurements
and GPS measurements; H(k) and D(k) are the observa-
tion matrices; and »n( k) is the measurement noise vector
with the covariance matrix R.

If the bias and drift term are ignored, the bias-free fil-
ter is merely a conventional Kalman filter. Hence, the bi-
as-free filter is given by

X(k,k-1) =A(k-1DX(k-1,k-1) (8)
Pk, k-1) =A(k)P*(k, k)A'(k) + Q% (k) (9)
K*(k) =P*(k, k- 1)H'(k)-

[H(k)P*(k,k-1)H'(k) +R(k)] ™" (10)

X(k, k) =X(k,k-1) + K*(k)[Y(k) —H(k)X(k,k-1)]

(1)

PX(k, k) =[I-K*(k)H(k)1P*(k,k-1) (12)

Since the inertial sensor noise is highly uncertain, a
fixed value of noise statistics can lead to poor filter per-
formance and even result in filter divergence. Thus, it is
advisable to use multiple models, which can represent
different noise levels and run in parallel. In our study, the
IMM approach contains three bias filters: one for a high
noise level, one for normal noise level, and the other for
low noise level. The specific IMM approach can be de-
scribed according to four steps:

Step 1 Interaction

The individual filter estimate U,(k — 1) of the i-th bias
filter (i =1,2,3) is mixed with the predicted model prob-
ability u,(k — 1) and the Markov transition probability
Tjis
state j to state i. The predicted model probability is calcu-
lated as

i.e. the probability that the transition occurs from

3

pilk k=1 = Y mu(k-1) =123 (13)
j=1

The mixing weight is given by

_7Tji,u,j(k—l)
ik k=1)

The mixing state estimation U,(k —1) is computed as

(k= 1) ij=1,2,3 (14

U(k-1) = zﬂjli(k -DUk-1) i=123
(15)

The mixing covariance P’ (k —1) is given as
g i g

PUCk =1) = S (k=) (PY(k = 1) +[U(k - 1) -
Uk -DIUGk-1) ~U(k-D]"} i =123

(16)
Step 2 Specific filtering

Using the initial mixing state and the covariance of the
interacting step, the bias filter with different noise levels
predicts and updates the model state and covariance indi-
vidually. Note that the specification of matrix Q depends
on the noise level™, thus the different bias filter has dif-
ferent matrix Q, i.e. Q}J(i =1,2,3). The execution of
the i-th bias filter (i =1,2,3) can be obtained as follows:

U(k,k-1) =C(k-1)U,(k-1) (17)
Pl(k,k=1) =C(k-1)P/(k-1)C'(k-1) +Q’(k-1)
(13)

K (k) =P"(k,k=1)S"(k)[H(k)P*(k,k-1)H"(k) +
R(k) +S(K)P (k, k-1)S"(k)] " (19)

U(k) =U,(k,k=1) +K; (k) [Y(k) —-H(k)X(k, k-1) -
S(HU.(k k=-1)] (20)

P/ (k) =[I-K/(k)S, (1P} (k,k-1)  (21)

where S(k) =H(k)J(k) +D(k), J(k) =A(k-1)V(k -
1) +B(k-1), V(k) =J(k) -K*(k)S(k), and K*(k) is
the gain matrix calculated in the bias-free filter.

Step 3 Model probability update

The probability of each model is updated according to
the innovation error. Under the assumption of Gaussian
statistics, the likelihood for the observation can be calcu-
lated from the innovation vector v,(k) and its covariance
s,(k) is as follows:

_exp{ = (172)v[ (k) [5,(k)] "'v,(k) }

Ai(k) =
v | 2as, (k)

i=1,2,3

(22)

where v, (k) =Y (k) —H(k)X(k,k-1) -S(k)U,(k, k -
1), s,(ky =H(k)P*(k,k-=1)H'(k) + R(k) + S(k) P}
(k,k-=1)ST(k), and P*(k, k - 1) is the error covariance
matrix calculated in the bias-free filter.
The model probability update is calculated as
w(k) = ;u,-(k, k —1)A;(k)
Z,uj(k, k —1)A,;(k)
=

i =1,2,3(23)

Step 4 Estimation fusion
The combined state U(k) can be calculated as
3
Utk = 3 p (k) Uk (24)
Then, the estimated U(k) is used to correct the output
of bias-free filter X(k) based on Eq. (5). Since the pro-
posed IMM-TSKF methodology can adapt to a wide range
of noise levels, an accurate positioning solution can be
achieved even when the positioning system suffers from
uncertain inertial sensor noise.

3 Experimental Validation

The performance of the proposed positioning methodol-
ogy is examined with several road-test experiments in a
land vehicle. Sensor data were collected during the exper-
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iments, and the positioning methodologies were run in
post-processing using the logged data. The sensor data
were recorded via using a Cherry TIGGO 5 SUV vehicle
which was equipped with a low-cost NovAtel Superstar [[
GPS receiver with 1 Hz update rate and MEMSIC MEMS-
based IMU VG440CA-200 inertial sensors sampled at 100
Hz. For the MEMS-based IMU, each gyroscope has a bi-
as stability of 10 (°)/h and angle random walk of 4.5
(°)/h"?, while each accelerometer has a bias stability of
1 x10~* g and velocity random walk of 1 m/(s - h™"?).
The accuracies of GPS (1¢) are 0.05 m/s for the veloci-
ty and 3 m for the position with sufficient satellite sig-
nals. Moreover, an accurate and reliable NovAtel SPAN-
CPT system was used as a reference for a quantitative
comparison. The positioning accuracy of the SPAN-CPT
system was 0.01 m with GPS observations.

Several road-test trajectories were carried out using the
setup described above. One of the trajectories was carried
out in the suburb of Nanjing, China, as shown in Fig. 2.
This trajectory was in an open field where the number of
accessible satellites was greater than five for both the low-
cost GPS and SPAN-CPT system throughout the whole
procedure of the experiment. Typical driving maneuvers
such as turns and stops at the traffic lights were conducted
during the test.

Test trajectory

Fig.2 Field test trajectory

The proposed positioning methodology was compared
with a general TSKF method. Note that the state vector of
the general TSKF is the same as that of IMM-TSKEF, i. e.
nine elements in the state vector of the bias-free filter and
twelve elements in the state vector of the bias filter.
However, the general TSKF method has only one bias fil-
ter with a constant  matrix. In addition, the general
TSKF method can refer to Ref. [1]. Fig. 3 displays the
position errors of the integrated positioning system using
the two approaches. Note that the position errors denote
the horizontal Euclidean distance errors between the esti-
mated position and the corresponding reference.

It can be seen that the proposed IMM-TSKF methodol-
ogy can achieve better performance than the general
TSKF. It can be determined that the average position er-
ror of the proposed methodology is 25% lower than that
of the general TSKF.

In order to further evaluate the robustness of the IMM-
TSKF, we inserted biases in MEMS inertial sensor meas-
urements after 500 s. For convenience and effectiveness,
we chose constant biases, i.e. biases of 0. 1g into three
axes of accelerometers and biases of 300 (°)/h into three
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Fig.3 Position errors in general TSKF and IMM-TSKF

axes of gyroscopes. After inserting biases, matrix Q in
TSKF needs to be updated correspondingly, which was
not done. The inaccurate matrix Q can cause a degrada-
tion in TSKF performance. However, IMM-TSKF was
envisioned to be adaptive to a wide range of noise levels.
Fig. 4 shows the results of position errors of the two ap-
proaches. It can be seen that the average position error of
the proposed methodology is 6.8 m lower than that of the
general TSKF after inserting biases.

40
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Fig.4 Position errors in general TSKF and IMM-TSKF with
inserted biases

4 Conclusion

This paper proposes a novel positioning methodology
for the INS/GPS integration system to adapt to the uncer-
tain noise of MEMS inertial sensors, thereby improving
the robustness of the vehicle positioning system. The pro-
posed methodology is based on the structure of the two-
stage filter. There are two major advantages: One is that
the computational load can be significantly reduced; the
other is that it is possible to only adjust the filter involved
with accelerometer biases and gyro drifts. Three bias fil-
ters are developed to cover a wide range of noise levels.
Then, an accurate estimation of biases can be obtained by
using the IMM algorithm. Finally, accurate position in-
formation can be achieved by removing errors from the
output of the bias-free filter. The performance of the pro-
posed methodology is evaluated through typical field
tests. The experimental results verify that compared with
the general TSKF, the proposed methodology can achieve
superior performance.
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