Journal of Southeast University (English Edition)

Vol. 33, No. 2, pp. 209 —215

June 2017 ISSN 1003—7985

Vibration control of pedestrian-bridge vertical dynamic
coupling interaction based on biodynamic model

Zhu Qiankun"’

Li Hongnan'

Nan Nana® Du Yongfeng’

(' Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China)

(*Western Center of Disaster Mitigation in Civil Engineering of Ministry of Education,
Lanzhou University of Technology, Lanzhou 730050, China)

Abstract: The human-induced vertical vibration serviceability
of low-frequency and lightweight footbridges is studied based
on the moving mass-spring-damper ( MMSD ) biodynamic
model, and the mass damper (TMD) with different optimal
model parameters being used to control the vertical vibration.
First, the MMSD biodynamic model is employed to simulate
the pedestrians, and the time-varying control equations of the
vertical dynamic coupling system of the pedestrian-bridge-
TMD are established with the consideration of pedestrian-
bridge dynamic interaction; and the equations are solved by
using the Runge-Kutta-Felhberg integral method with variable
step size. Secondly, the footbridge dynamic response is
calculated under the model of pedestrian-structure dynamic
interaction and the model of moving load when the pedestrian
pace frequency is consistent with the natural frequency of
footbridge. Finally, a comparative study and analysis are
made on the control effects of the vertical dynamic coupling
system in different optimal models of the TMD. The
calculation results show that the pedestrian-bridge dynamic
interaction cannot be ignored when the vertical human-induced
vibration serviceability of low-frequency and light-weight
footbridge is evaluated. The TMD can effectively reduce the
vibration under the resonance of pedestrian-bridge, and TMD
parameters are recommended for the determination by the
Warburton optimization model.
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ith extensive use of high-strength materials, foot-
bridges tend to be of lower frequency, slender and
lightweight, and more sensitive to human-induced excita-
tion, resulting in human-induced vibration serviceability
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problems'”. Human-induced excitation simultaneously
causes vertical and horizontal vibration of the footbridge.
A significant horizontal vibration will occur when multi-
ple pedestrians walk on the flexible structures. However,
perceptible vertical vibration in ordinary footbridges can
be induced even by a single walking pedestrian'”. As a
self-adaptive, intelligent driving force, pedestrians may
adjust their footsteps in response to the vibration of the
footbridge, which is accordingly influenced by footsteps
and vice versa, forming a human-bridge interaction"™ .
Nevertheless, engineers know little about this human-
structure interaction mechanism, and it is almost ignored
in footbridge designs. The recommended method for cal-
culating the human-induced vibration is one where pedes-
trian load acting on the bridge is treated as moving load
expressed in the Fourier series'”’
cases. However, if it is employed in lightweight con-
structions, particularly when the natural vibration fre-
quency of the structure is consistent with that of pedestri-
ans, there is great difference between the estimated results
and measured values'*®' .

The dynamic interaction model of the pedestrian-struc-
ture should be established in order to obtain a reliable
measurement in the vibration serviceability of a structure.
Currently, available pedestrian-structure dynamic models
consist of the moving mass-spring-damper (MMSD) """,
the inverted pendulum model™ and the bipedal model™ .
The MMSD is a single degree of the freedom dynamic
system, in which human weight is concentrated at the
center of gravity, thus, the mechanical impedance of the
lower limbs and the energy dissipation of the human body
can be, expressed in the parameters of
mass, stiffness and damping. These are related to the
three empirical functions concerning pacing frequency and
body weight'"”. This model is extensively applied in hu-
man-structure dynamic interaction'"' " and it exhibits ex-

and is applicable to most

respectively,

plicit physical meaning and it easily forms a dynamic cou-
pling system with the structure.

The tuned mass damper (TMD) is a vibration control
system composed of mass, spring and damping, and it is
widely used in resistance against vibration of the structure
under earthquake or wind load. In order to satisfy the ver-
tical vibration serviceability of footbridge, the application
of the TMD is becoming more typical in the current de-
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sign of footbridges'"™". According to different design

criteria, different optimal TMD characteristics can be ob-
tained, thus reducing the structural response to harmonic
loading condition or random loading ( such as white
noise) characterized by a uniform spectrum'"’. For the
TMD installed in the box girder of the footbridge, apart
from vibration reduction, the displacement limit of the
structure needs to be taken into consideration in its design
and fabrication.

On the basis of some research results obtained by other
scholars, this paper attempts to establish the time-varying
control equations of the human-bridge-TMD vertical dy-
namic coupling system by simulating pedestrian-structure
interaction based on the MMSD biodynamic model and
solves the equations by using Runge-Kutta integration
method with variable step size on a Matlab computing
platform. The dynamic response when the pedestrian pace
frequency is consistent with the natural frequency of the
footbridge is calculated under the dynamic interaction
model and moving load model, and a comparative study
and analysis are made on the control effects of the vertical
dynamic coupling system in three different optimal model
parameters of the TMD.

1 Biodynamic Model

The MMSD biodynamic model simulating pedestrian
walking is proposed by Archbold et al. ", as shown in
Fig. 1. The model is composed of two parts: The pedes-
trian biodynamic parameters m, k, and c_, and the pedes-

trian walking load F,.

My
kp p
Fp

Fig.1 MMSD biodynamic model

The walking dynamic parameters were obtained from
the test of 34 males and 1 female in Ref.[16], and the
correlative analysis was made among these parameters.
Some relevant formulas in Ref. [ 16] are therefore im-
proved, and then the pedestrian biodynamic parameters
can be represented by the pedestrian body mass M and
stride frequency f,:

m, = —231.34 +3.69M +154.06f, - 1. 9TMY, +

0.05M* —15.25f; (D)
¢, = —1115.69 +92.56M - 108. 94m,, +
2.91Mm, - 1.33M° - 1.30m, (2)
k, =75 601 -1 295.32M -33 786. 75f, +
506. 44Mf, +3.59M" +539. 39f; (3)

The pedestrian walking load F, is'"!

F, =G +G Y asin(2mif,t - 6) (4)

where G is the weight of pedestrian, generally equal to
750 N; «, and f; are the dynamic load factor and walking
frequency, respectively. The phase angle 6, often equals
0, and i is the term of inter-harmonics adopted in the cal-
culation. The dynamic load factors are generally taken the
former three steps as follows:

a, =0.22f) -0.45f, +0.35 (5a)

@, =0.024 +6.87 x10 ’c, -2.4x10 "k, (5b)
a; = —0.064 +0.002 4M - 1.1 x10 °k, +

1.0x10 "Mk, -1.38 x 10 "M’ (5¢)

The dynamic response of the structure was calculated
based on the above MMSD biodynamic model in Refs.
[5,17], and the calculated results were in agreement with
the experimental results. It shows that the MMSD biody-
namic model can be used in the calculation of the pedes-
trian-structure dynamic coupling system.

2 Optimal Models of TMD Parameters

Traditionally, in the case of harmonic loading, the op-
timization of the frequency ratio and the TMD’s damping
aims at minimizing the structural response by minimizing
the structural dynamic magnification function. The opti-
mum TMD damping ratio is determined as the arithmetic
mean of the values that give the maximum dynamic mag-
nification at the two fixed points. The optimum values of

the frequency ratio and the TMD damping ratio'”' can be
obtained.
1
= 6
Ao =7 Py (6)

| 3u
gdopt_ 8(] +/-L) (7)

where A, u are the frequency ratio and the mass ratio
between the TMD and the structure control model, re-
spectively; ¢,,,is the damping ratio of the TMD.

The optimization design of the TMD under white noise
was introduced by Warburton et al'®'. The optimal pa-
rameters, which can minimize the variance of the struc-
tural response, are obtained.

1 +u/2

D T (8)
)73

¢ ~ w(1+3/4u)

©OPWVE T ALA(T +p) (1 +1/2u)

Eqgs. (6) to (9) are based on the assumptions of none
of the damping structures of the TMD optimization mod-
el, and Tsai et al. """ deduced the design formulas for the
damping structure:

(9

/\ optWB

(S )

[2.375 - 1.034/u —0.426u] &, Vi -
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(3.730 - 16.903 /u +20.496p)&u (10)

+(0.151&, -0.170£7) +
(11)

Y M
Eopown = 8(1 +um)(1-0.5u)
(0.163¢, -4.980&")

where £ is the damping ratio of structure.

3 Vertical Dynamic Coupling System of Pedes-
trian-Bridge-TMD

The vertical coupling dynamic system consists of a pe-
destrian, footbridge and TMD, as shown in Fig.2. The
footbridge is assumed to be the uniform section Euler-
Bernoulli beam. L is the span of footbridge; E and I are
the elastic modulus and section moment of inertia, re-
spectively; m is the mass of footbridge per unit length.
The pedestrian can be described by the MMCK biodynam-
ic model, where m,, k, and c, are the mass, stiffness and
damping of the TMD; v is the walking speed of pedestri-
an, which is generally 0. 9 times that of the stride fre-

quency; u_, u, and u are the vertical displacements of the

P’
pedestrian, TMD and footbridge, respectively; X is the
position of the TMD, and ¢ is the walking time. There is
an assumption that the pedestrian and bridge always re-

main in contact when the pedestrian is walking.

Fig.2 Pedestrian-bridge-TMD dynamic coupling system

The equations of the motion of the structure, pedestrian
and TMD can be written in the following forms, respec-
tively:

2 4
ma u(x, t) te ou(x, t) +E18 u()i, 1) _

or’ at ox
8(x - %) {kd[ud(;) ~ux 1 4,0 _au(gi,tt)] } .
S(x —vr) {mpg+Fp +k[u, (1) —u(x, 0] +

m,ii, (1) +cp[u‘,,(t) —%] +k[u, (1) —u(x, )] =0
(13)

maiiy () + e[ (0 =L 4k fuy () - utx 01 =0
(14)

where § is the Dirac equation. Substituting u(x, ) =

z v,()¢,(x) into the above equations, where ¢, (x) is
n=l

the n-order vibration mode function and y, is the general-
ized ordinates, Egs. (12), (13) and (14) can be, re-
spectively, re-written as follows:

m,5,(0 +{28,0,m3,(0 + ¥ 163,06, +
(D6, (0,01 | + {may, (0 +

®

3 Uy, (0,06, (0) +ky, (D, (6D | -

m=1

[ku, (D) +cu, ()], (vD) —
[ku () +cui (D], (%) =

(m,g +F)b,(vD) +mgd, (%) (15)
myii, (1) +c,u, (1) +ku, (1) —
Cp 2 Vndu(VD) =k, 3 v, (VD) =0 (16)
myii, (1) +cyu,(t) +ku,(t) —
Co 2 Vudu(X) =k 3 y,,(3) =0 (17)

where m,, ¢, and w, =2mf, are the n-order modal mass,
the modal damping ratio and the modal circle frequency,
respectively.

Combining Eqgs. (15), (16) and (17) can obtain the
control equation of the pedestrian-bridge-TMD dynamic
coupling system, and the control equation can be written

in the following matrix form:
My +Cy+Ky=F (18)

The mass matrix M, the damping matrix C and the stiff-
ness matrix K are given as follows:

-m, -
m,
M= (19a)
mN
m,
L m,
[Cn Cn Civ Cip CudT]
€y Cp Cov Gy Cyy
c=| ¢ : : : : (19b)
Cyi Cxp oo Cay Crp Cpg
Co  Cp Cov €y 0
Lcy Ca cow 0 ¢,
KIS kiy ki kg
ky ks Ky kyy kg
K=l ke ook Ky k| P9
pl p2 kpN P 0
- Kqy @ Ky ky

The matrix elements in Eq. (19) can be given by

ky =mo’ +k ¢ (v) +k,d (%)
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ky =k, = —k,d,(v)

ki =ky = —kyp,(X) i=1,2,..,N
k,.j =kp(f>,-(Vf)(I5j(Vt) +kdqbi(5c)(j)j(jc)
i,j=1,2, ...,N;i#j
cip =cpi = _cpd)i(Vt)
¢, =2&w,m, + cpd)?(vt) +c,dl (X)
Ca =Cq = = Cyp, (%) i=1,2,--- N
c;=c,d,(vt),(vt) + ¢y, (X) P, (%)
i,j=1,2, N;i#j

The displacement vector y and the force vector F in Eq.
(18) are given as

)’:[yl,yz,"',yN,Mp,ud]T (20)
F= [de)l b2 s prdy ’O’O]T (21)

where pp = (m,g + F,) ¢, (vt) + mygd, (x). When the
pedestrian is crossing the footbridges, K, C and F change
continuously, and then the control equations of the pedes-
trian-bridge-TMD vertical dynamic coupling system be-
come time varying second-order differential equations.
On the Matlab computing platform, the Runge-Kutta inte-
gration method with variable step size was used to solve
the time varying control equations of the dynamic cou-
pling system.

4 Example Analysis

The example is a lightweight cable-stayed footbridge
made of the FRP material.
bridge is 63 m and the main span part of the footbridge is
regarded approximately as a simple beam just like that in
Ref. [20]. By means of the modal test of the footbridge,
it can be determined that the main mode shape of the
bridge is the first-order vertical vibration. The vibration
frequency is 1.52 Hz, the damping ratio is 0.42% , and
the modal mass is 2 750 kg.

The main span of the foot-

4.1 Pedestrian-bridge dynamic interaction

When a pedestrian walks on the footbridge in accord
with the first-order resonance frequency of 1.52 Hz, the
acceleration time history curves of the bridge under the
action of the moving load model and the interaction mod-
el are shown in Fig. 3.

— Interaction
~— Moving load

\m i HH“”' 'H

l H |
i,
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S

—_
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Fig.3 Acceleration time responses of the footbridge under dif-
ferent loading models

As shown in Fig. 3, the peak value of acceleration of
the pedestrian bridge under the moving load model is
2.79 m/s’, while under the interaction model, the peak
value of acceleration is 1.75 m/s>, which is reduced by
37% . It can be seen that, for the light and low frequency
structure, the dynamic interaction of the pedestrian-struc-
ture cannot be ignored. Although the dynamic interaction
of the human-bridge is taken into account, the peak value
of the acceleration of the pedestrian bridge is still greater
than the limit value of 0. 70 m/s”*"
essary to control the vibration of the pedestrian bridge.

. Therefore, it is nec-

4.2 TMD control of dynamic coupling system

According to the Den Hartog optimization model, the
design parameters of TMD were obtained to control the
first-order mode of the pedestrian bridge with the mass ra-
tio u of 0. 01. The pedestrian-footbridge-TMD dynamic
coupling model not only installs TMD but also considers
pedestrian-bridge interaction, the moving load-footbridge-
TMD dynamic coupling model installs TMD without con-
sidering the pedestrian-bridge interaction, and the moving
load-footbridge neither installs TMD nor considers pedes-
trian-bridge interaction. Fig. 4 is the dynamic responses
of the footbridge according to different coupling models
when a pedestrian goes through the footbridge with a
walking frequency equal to the first-order resonance fre-
quency of 1.52 Hz.

In order to confirm whether the strength of the structure
is impacted after the installation of TMD, the finite ele-
ment software ANSYS is used to analyze the strength of
the structure. TMD is installed in the secondary beam via
bolts and the beam is of the steel type Q235, of which the
stress intensity is 210 GPa and the mass of TMD is 27.5
kg. The stress intensities of structure under the action of
gravity and pedestrian load are calculated and the maxi-
mum stress intensities are 2. 10 and 2.24 MPa, respec-
tively, which is far less than the maximum stress intensity
of Q235 steel.
principal stresses at the joint of the main beam and the
secondary beam are 17 232 and 18 369 Pa, respectively,
which is less than the tensile strength of the bolt. So, the
structure remains safe.

As shown in Fig.4(a), after installing the TMD, the
peak acceleration of the footbridge from the moving load
model of 1.75 m/s’ reduces to the pedestrian-footbridge-
TMD coupling dynamic model of 0.47 m/s*and the foot-
bridge-TMD coupling dynamic model of 0.53 m/s*, and
the ratios of vibration mitigation are 73.7% and 69.7% ,
respectively; which meet the requirements of vertical vi-
bration serviceability.
stalling the TMD, the responses of bridge under the action

Under the two conditions, the maximum

It can also be seen that, after in-
of moving load model and interaction model are almost
equal. Employing the fast Fourier transform into accelera-
tion time history, the FFT spectrum curve is shown in
Fig.4(b), from which a similar conclusion as Fig.4(a)
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Fig.4 Dynamic response of footbridge with different dynamic

coupling systems.
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(a) Acceleration time history; (b) FFT spectrum

can be reached.
4.3 TMD control effects of different optimization models

Tab. 1 presents the TMD optimization parameters of
three different optimization models in three typical mass
ratios.

Tab. 1 Optimal parameters of TMD

Den Hartog Warburton Tsai
e T T Y
0.01 0.99 0.06 0.99 0.05 0.99 0.06
0.03 0.97 0.10 0.98 0.09 0.96 0.11
0.05 0.95 0.13 0.96 0.11 0.94 0.14

As shown in Tab. 1, the optimal frequency ratios ob-
tained by different optimization models are not so differ-
ent, but the optimal damping ratios are quite different.
Among them, the minimum damping ratio is obtained by
the Warburton optimization model, and the maximum
damping ratio is obtained by the Tsai model. In addition,
with the increase of the mass ratio, the damping ratio in-
creases.

The responses of the footbridge of the pedestrian-foot-
bridge-TMD vertical dynamic coupling system are shown
, and the TMD
It can be seen in
Fig.5(a) that, when a pedestrian walks with the first-or-

in Fig. 5 when the mass ratio equals 0. 01
uses different optimization parameters.

der resonance frequency of 1.52 Hz, after the TMD is in-
stalled in the footbridge with different model parameters
of Den Hartog, Warburton and Tsai, the peak accelera-
tions are 0.47, 0.40 and 0.48 m/s’ ,respectively. Corre-
spondingly, the damping rates are 73. 7% , 77.1% and
72.6% , respectively, and all of them meet the require-
ments of vibration serviceability. Particularly, the War-
burton optimization model has the best vibration mitiga-
tion.

With the fast Fourier transform of the acceleration time
history of different optimization models of TMD, we can
obtain the FFT spectrum curves, as shown in Fig.5(b).
Clearly, when a pedestrian passes through the footbridge
with the first-order resonance frequency of 1.52 Hz, the
Warburton model has the best optimal damping effect,
the Den Hartog model follows, and the Tsai model is the
poorest.
different optimization models is almost the same when

However, the ratio of vibration mitigation of

doubling walking frequency.
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Warburton
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Fig.5 Dynamic responses of footbridge with different optima-

tion models of TMD. (a) Acceleration time history; (b) FFT spec-
trum curve

Fig. 6 shows TMD relative displacement dynamic re-
sponse when the pedestrian walks along the footbridge
with the fundamental frequency of 1.52 Hz. As can be
seen from the figure, using parameters of the optimization
models of Den Hartog, Warburton and Tsai, the peak
values of relative displacements are 0. 042, 0.043 and
0.041 m, in which the optimization model of Tsai re-
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quires the minimum space for the installation of TMD.
When making the fast Fourier transform on the relative
displacement of TMD, the FFT spectral curve can be ob-
tained , as shown in Fig.6(b) , indicating that the relative
displacement of TMD is mainly generated by doubling
stride frequency, but the relative displacements of the
three optimization models of TMD show not much differ-

€nce.
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Fig.6 Dynamic responses of TMD with different optimation
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5 Conclusions

1) The dynamic human-bridge interaction cannot be ig-
nored when the vertical human-induced vibration service-
ability of the low-frequency and lightweight footbridge is
evaluated. The calculation results indicate that a 29. 4%
peak acceleration difference of footbridge is expected
when the pedestrian pace frequency is consistent with the
natural frequency of the footbridge under the action of the
moving load model and interaction model.

2) The TMD can effectively reduce the vibrations of
the footbridge caused by pedestrian-bridge resonance. An
example reveals that the vibration mitigation ratio reaches
up to 73.3% by using the TMD.
action of the moving load model and the interaction mod-
el, the response of the acceleration are almost equal.

3) Employing the different optimization models of
Warburton, Krenk and Den Hartog to design the TMD,
the decreasing amplitude ratios of the pedestrian bridge

Meanwhile, under the

and the relative displacement of the TMD show no signifi-
cant difference. Whereas, under Warburton’s model, less
damping is needed. So, the Warburton optimization mod-
el is recommended to control the vibrations of the foot-
bridge.
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