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Abstract: The flexibility of dynamic community structure is
adopted to analyze the depressive resting-state functional
magnetic resonance imaging ( rfMRI) signals in order to
improve the accuracy of evaluating depression treatment. The
rfMRI signals of each brain network were obtained by the
independent component correlation algorithm (ICA). Dynamic
functional connections were computed with sliding windows
and L1 norm. Then, the connections were used to calculate
the dynamic community structure via the community-detection
algorithm. The result of structure’s community assignment has
the general character with the brain activity changing over
time. The flexibility index is one of traits of dynamic
community structure, meaning the number of times a region
changes. In this study, 16 patients who achieved clinical
remission joined the experiment and were scanned before and
after treatment. Pair permutation tests compare the difference
of six brain networks’ flexibility between pre-therapy and post-
The results show that the distribution of the
flexibility values declines in a default network and cognitive

treatment.

control network between pre-therapy and post-treatment
patients with statistical difference. Therefore, flexibility is a
suitable approach to accurately evaluate the depression
treatment effect.
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community — structure;

esting-state functional magnetic resonance imaging
(rfMRI) was not regarded as a temporal stationarity
and the sliding time window was used to calculate the dy-
namic functional connectivity (FC) and study the tempo-

" The dynamic FCs were

ral variability of brain activity
obtained by the way of spatial independent component a-
nalysis or region of interest (ROI), and then they were

clustered into suitable groups to investigate brain dynam-
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ics' . However, this type of method ignored the coupling
relations of adjacent layers of the sliding time window and
cannot express the time-dependence during the brain
activity.

Dynamic community structure removes above limits via
quality functions to multislice networks and dynamic net-
work null models were found to certify the robustness of
the dynamic community structure''. This algorithm of
studying dynamic brain activity has been used to study the
dynamic reconfiguration of human brain networks during
learning and different dynamic brain activities between
depression and matched health”™ .

Flexibility is one of dynamic community structure’s
traits, which means the normalized number of times a re-
gion changes and manifests the dynamic activity of a
node'’. The network flexibility increases and then de-
creases during a learning process and network flexibility
values were modulated by learning"'. The flexibility of
the salience network was significantly different between
depression and health in our previous work. Therefore,
it is necessary to explore further whether such a network
characteristic can identify the status of patients pre/post
treatment.

In this article, dynamics community structure was used
to compute the whole brain’s region community assign-
ment with time and flexibility is the model’s trait to dis-
tinguish between the pre-therapy and post-treatment. The
method of spatial independent component analysis (ICA)
together with the sliding time windows is used to extract
the resting state network signals and then to compute the
dynamic FC. Then dynamics community structure and
flexibility can be calculated via dynamic FC to detect the
transformation of dynamic brain activity.

1 Dynamic Community Structure
1.1 Community detection algorithm

Dynamic community structure is composed by commu-
nity-detection algorithms. The community-detection algo-
rithm divides a network into several connected tightly
groups of nodes'".
group is above the level between nodes in different

The connected dense of nodes in a

groups. We established coupling relationships between
layers by sliding windows. In this algorithm, A, gives the

connection of layer-/ and P offers the constituent of the
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relevant layer-/ connection for the optimization null mod-
el. The maximum value of Q is a key index when dividing
the network into groups. For example, the total connection
weight inside the group is allowed to be as large as possi-
ble. Then, the algorithm can be defined as"”
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where §,w,, is the coupling relationship between layers and

w,, means the coupling connection strength. The Kroneck-
er delta §; =1 if i =j and §, =0 otherwise. v, is layer I’s
structural resolution parameter and g, represents the com-
munity assignment in node i and layer /. Meanwhile, the

sum of the whole network’s edge weight gives u =
% Z K, and the power in node j and layer / equals K, =k,

+c; when the strength of inter-layer and intra-layer in node

Jj in layer [ is calculated via k;, = z Ayandc, = 2 W,

1.2 Dynamic network null models

Dynamic network null models consist of a connectional
null model, a nodal null model, a temporal null model
and the result’s robustness in changing intra-layer strength

(23] a nodal

between layers'~” . A connectional null model,
null model and a temporal null model are the permuted
networks for the connectional, nodal, and temporal null

models, respectivelylz].

2 Experiments

2.1 Participants

All participants were patients with a depressive episode
who were from 20 to 55 years of age. 30 participants
were selected to join the experiment but only 16 achieved
clinical remission after treatment which was confirmed
by expert psychiatrists and conducted the whole experiment.

The 16 participants consist of 12 males and 4 females.
The mean of patients’ age and education years are 37. 125
and 12. 938, respectively. The average value and stand-
ard deviation of patients’ HDRS ( Hamilton depression
rating scale) are 25.500 and 5. 562 before treatment and
are 4. 875 and 4.515 after treatment. The p value of the
two-tailed t-test is significantly different between pre-
therapy’s HDRS and post-treatment’s HDRS.

The initial diagnoses of depressive episode patients were
made by patients’ treating psychiatrists and confirmed by
an expert psychiatrist according to the Diagnostic and Sta-
tistical Manual of Mental Disorders 4th (DSM-[V) criteria.
They were assessed using 17-item Hamilton Rating Scale
for Depression at the first scans and second scans.

2.2 Image data acquisition

All patients were scanned by the 3. 0-T Siemens MRI
system ( Siemens Medical Solutions, Germany). All TI1-
weighted structural data and the resting-state functional
images were recorded by a gradient-echo sequence with
the following scanning parameters as summarized in Tab.
1. Every functional image scan obtained 133 volumes and
all participants kept the eyes closed and thought of noth-
ing during scanning time.

2.3 Data preprocessing

The first five functional volumes were deleted to let
participants adapt to the machine noise. Data preprocess-
ing was handled via DPARSF and the steps include slice-
timing, correction, normalization, and
smoothing ™. Structural data was allowed to segment and
transform into the Montreal Neurological Institute ( MNI)

head-motion
6]

space and its resolution parameter is 3 mm X 3 mm x 3
mm. Then, smoothing was done to the functional image
with 6-mm full-width at half-maximum Gaussian kernel.

Tab.1 The major parameters of image data acquisition

Data t Slice Slice Field of view/ Flip Voxel resolution/ Echo Repetition
ata type number thickness/mm (mm X mm) angle/(°) (mm X mm) time/ ms time/ms
T1-weighted
176 1 250 x 250 9 2.48 1 900
structural data
Resting-state
32 4 240 x 240 90 3.75%x3.75 40 3 000

functional data

2.4 Group spatial independent component correla-

tion algorithm

Group spatial ICA (independent component correlation
algorithm) was used on every group’s data, respectively,
by GIFT software'”’. Images were imported into the tool-
box and rfMRI signals were divided into one hundred
groups of independent components when the informax al-
gorithm was repeated 10 times to guarantee the robustness

of the Group spatial ICA'"™ . Individuals’ time courses in

these spatial independent components were then estimated
by the GICA3 back-reconstruction algorithm. Independent
components of six networks in the whole brain were se-
lected by visual identity and correlation templates map-
ping with Allen’s result”. Groups of pre-therapy, post-
treatment were handled, respectively, and the number of
independent components was a little different in the two
groups. The results after Group spatial ICA were bandpass
filtered (0.01 to 0.08 Hz) to reduce low-frequency drift
and high-frequency noise before calculating covariance.
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2.5 Dynamic functional connection estimation

Every covariance of sliding windows was calculated.
We used a rectangular window with steps of 3 s. The
width of a rectangular window is 90 s and the number of
windows is 99. At the same time, the L1-norm regular-
ized precision matrix was used to estimate every
window’s covariance due to the stability of short time
window segments and keep the sparseness of precision
matrix"

tions were estimated by the precision matrix

. Then, individual’s dynamic functional connec-
[9-10]

2.6 Dynamic community structure

According to relevant papers, the structural resolution
parameter and the intra-layer connection between layers
were both set to be 1.0 in this experiment”. A
participant’s dynamic community structure was calculated
100 times and the mean of Q values was taken as the final
result due to the local optimum of the algorithm. Howev-
er, for all participants, the result of the algorithm is con-
vergent and the discrepancy of every Q value was ex-
tremely small between 100 times’ computation'™”". Fig. 1
gives one participant’s distribution of Q after 100 times
computation. Fig.2 gives a dynamic
structure’s community assignment and the dynamic inter-

community

action between nodes during the scanning.

The results of the pair permutation test show that the
distribution of the Q values and module number are non-
significant between two groups. However, the distributions
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Fig.2 Community assignment of a participant

of index called flexibility were significantly different in
the default networks and cognitive control networks be-
tween pre-therapy and post-treatment (see Tab.2).

Tab.2 Results of the flexibility’s pair permutation test

Brain Subcortical Auditory Somatomotor Visual Cognitive control Default
networks networks networks networks networks networks networks
P value 0.034 0.0459 0.416 0.189 6 0.0112" 0.003 8"

*

Note: * shows significant difference after correction.

We used the modularity index Q to assess the robust-
ness of the model and detect the differences of the dynam-
ic community architecture between the real and permuted
networks for the dynamic network null models by one-
sample t-tests. All t-test results are over 10 > and the dy-

namic network null model is robust for every subject!'".

3 Conclusion

Flexibility, one of the traits of dynamic community
structure, means the normalized number of times a region
changes its module allegiance and manifests the dynamic
activity of a node'”’.
network and default network decrease in the post-treat-

Its values in the cognitive control

ment patients. It is suggested that the cognitive control
network is related to cognitive functioning and the de-
fault-mode network is implicated in spontaneous and self-
generated cognition'”""'. Meanwhile, the two networks’
abnormalities are both concerned with the depressive epi-

[12]

sodes’ ~'. The downtrend of their flexibility means a re-

mission of depression and improvement of cognitive func-
tioning, spontaneous and self-generated cognition. There-
fore, the study of the dynamic community structure over
brain is a feasible way to analyze the treatment of depres-
sion.
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