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Abstract: The impacts of four different car-following types on
rear-end crash risks at a freeway weaving section were
evaluated using trajectory data, in which Type 1 represents car
following car, Type 2 represents car following truck, Type 3
represents truck following car and Type 4 represents truck
following truck. The time to collision (TTC) was introduced
as the surrogate safety measure to determine the rear-end crash
risks. Then, the trajectory data at a freeway weaving section
was used for the case-controlled analysis. Three logistic
regression models were developed with different TTC
thresholds to quantify the impacts of different car-following
types. The explanatory factors were also analyzed to
investigate possible for the of logistic
regressions. Results show that the rear-end crash risk of Type
3 is 3. 167 times higher than that of Type 1 when the TTC
threshold is 2 s. However, the odds ratios of Type 2 and Type
4 are both smaller than 1, which indicates a safer condition.

reasons results

The analysis of explanatory factors also shows that Type 3 has
the largest speed differences and the smallest net gaps. This is
consistent with vehicle operation features at a weaving section
and is also the reason for the larger rear-end crash risks. The
results of this study reflect the mechanism of rear-end crash
risks of different car-following types at the freeway weaving
section.
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he weaving section is the fundamental segment of
freeway, at which two traffic streams traveling in
the same direction cross each other. Due to the frequent
lane changes of merging and diverging vehicles, the wea-
ving section often results in traffic accidents, such as rear
end, sideswipe and hit object. According to previous
studies, while sideswipe accidents intuitively occur at
weaving sections, the rear-end accidents still have the
highest likelihood among all the accident types'' ™.
Previously, most of the research has focused on how
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different weaving section designs affect traffic capacity”™

and how to precisely model lane-changing behaviors oc-
curring at the weaving sections””’. Compared with nu-
merous studies centralized in other segments[gf”l, rela-
tively few studies were conducted to investigate rear-end
accidents at weaving sections'' >'*'. The major reason is
that historical crash data is difficult to collect in such a
certain position and the crash data’s quality is also diffi-
cult to guarantee'"!

With the extensive development of the portable traffic
surveillance system, there is an increasing trend for re-
searchers to evaluate rear-end crash risks using vehicle
trajectory data'”™”'. In contrast to the historical crash da-
ta, trajectory data includes detailed vehicle information
such as velocity, position, and acceleration on every sec-
ond or sub-second. Based on this data, the real time safe-
ty condition can be easily measured and evaluated. For
example, Oh and Kim'""' used the Premier Pro 2.0 soft-
ware to extract vehicle trajectory data and estimated the
rear-end crash potential. Weng et al.'™ analyzed the
rear-end crash risk of work zones for different vehicle-fol-
lowing patterns using trajectory data. Thus, the rear-end
crash risks at the weaving section can also be investigated
through vehicle trajectory data.

On the other hand, an important branch of rear-end ac-
cident studies is to evaluate the impacts of different car-
following patterns. Council et al. "' analyzed the North
Carolina car and truck crashes data and pointed out that
the truck drivers were at fault more often than the car
drivers in rear-end accidents. Abdel-Aty and Abdelwa-
hab'™ used three statistical models to investigate the role
of light truck vehicles in rear-end crashes. Yan et al.'"”
developed a multinomial logistic regression model to ana-
lyze the truck-involved rear-end accidents. Romo et
al. " developed a mixed logit model to estimate the
probability of rear-end and identify precrash factors for cars
and trucks. However, to the best of our knowledge, there
is no study focused on the impacts of different car-follow-
ing types at a freeway weaving section. It is necessary to
compare the effects of distinct car-following types on rear-
end crash risks with the high quality trajectory data, and to
explore the explanatory factors of the crash risks.

1 Data Sources and Methodology

1.1 Surrogate safety measure

In contrast to using historical accident data, an appro-
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priate surrogate safety measure should be used to evaluate
the rear-end crash risk, which establishes the relationship
between crash risks and vehicle trajectory data. In previ-
ous studies, several surrogate safety measures were pro-
posed, such as time headway””, deceleration rate to
avoid a crash (DRAC)™™ and TTC"*'"*?. TTC is
the most common indicator, which was also used as the
surrogate safety measure in this study. The TTC notion
was introduced by Hayward” and afterward applied in
k"** . TTC

represents the time required for two successive vehicles to

many studies to evaluate rear-end crash ris

collide if they do not change their present operational con-
ditions. Thus, the TTC of a following vehicle i at time
step k with respect to the leading vehicle i — 1 can be cal-
culated as

x;_, (k) —x,(k) - L,

TTCl(k) = Vi(k) _ Vi—l(k) Vi(k) >Vi71(k)
- V() < v, (B)
(1)

where x is the position of the vehicles; v is the speed of
the vehicles; L is the length of the vehicles.

A smaller TTC value indicates a more dangerous condi-
tion of the following vehicle, and vice versa. In order to
distinguish the safe and unsafe situation of vehicles, a
threshold TTC™ should be determined. Previous studies
suggested that TTC™ varies from 2 to 4 s""*™. These
values were derived from a large amount of empirical
driving data and were extensively applied in previous re-
search. In this study, a TTC value lower than the thresh-
old is considered to be exposure to rear-end crash risk,
which is also set to be the risk case. Three different val-
ues of TTC" are also analyzed, equalling 2, 3 and 4 s,
respectively.

1.2 Data sources

The weaving section trajectory dataset is provided by
the Federal Highway Administration’s Next Generation
Simulation ( NGSIM) project'™ . The dataset covers a
weaving segment of Interstate 80 in Emeryville, Califor-
nia collected between 16: 00 and 16: 15 on April 13,
2005. Vehicles merge from the Powell Street on-ramp
and diverge from the Ashby Ave off-ramp (see Fig.1).
Note that, although the off-ramp is not included in the
dataset, the study area covers the major section for wea-
ving behaviors. The data of the major weaving section is
still useful considering the objective of this study. The
video data is firstly collected by seven video cameras
fixed on a 30-story building near the studied roadway.
Then, customized software developed by NGSIM is used
to automatically detect and track vehicle trajectories.
Complete vehicle trajectories are transcribed at a resolu-
tion of 10 frame/s with high quality, which are precise
enough for our analysis. The data of one vehicle’s trajec-

tory includes position, velocity and acceleration every
0.1 s. More details about the trajectory information can
be referred to in the reports of NGSIM™' .
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ges of seven cameras

The studied roadway is approximately 503 m in length,
with six lanes at the weaving section. The left-most lane
is a high-occupancy vehicle lane. The average flow of the
segment is about 7 592 veh/h. The time mean speed is
about 35.58 km/h and space mean speed is 28. 50 km/h™".
So, the traffic condition is quite congested. However,
the mean speed of the high-occupancy vehicle lane is lar-
ger than that of other lanes. Three different vehicle types
are classified in the dataset: motorcycles, passenger cars
and trucks. Due to the rare fraction of motorcycles, only
the passenger cars and trucks are taken into consideration.
Four car-following types are included as illustrated in
Fig.2, i.e. Type I refers to C-C (car follows car), Type
2 refers to C-T (car follows truck), Type 3 refers to T-C
(truck follows car), and Type 4 refers to T-T (truck fol-
lows truck).
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For each car-following type, the case that the TTC val-
ue smaller than the threshold TTC " is set as the risk case
(cases). The Matlab software was used to track the data
from the original NGSIM dataset. All the vehicles invol-
ving lane-changing behaviors were removed. In addition,
the complete car-following processes whose duration time
is larger than 15 s were collected for our study. After data
collection, as shown in Tab. 1, a total of 12 627 cases
were included in the dataset when TTC" is 2 s. Then, a
control-to-case ratio of 4: 1 was used which randomly se-
lected the paired crash free data ( TTC is larger than
TTC") as the non-risk cases (controls). The detailed da-
ta of different vehicle-following types and TTC " are illus-
trated in Tab. 1.

Tab.1 Data of four car-following types based on control-to-case

Cases Controls
Types TTC<2s TIC<3 s TTC<4 s TTIC>2s TTIC >3 s TTC>4 s
Type 1 11030 27032 49252 44120 108 128 197 008
Type 2 55 147 330 220 588 1320
Type 3 1 504 2239 3 049 6016 8956 12 196
Type 4 38 81 114 152 324 456
All types 12627 29499 52745 50508 117 996 210 980

1.3 Logistic regression models

To investigate the relationship between different car-
following types and rear-end collision risks, a regression
model is necessary. Considering that the TTC value can
distinguish safe and dangerous conditions, it is easy to
use a binary regression model for analysis. Thus, the lo-
gistic regression model is applied in this study. Three lo-

gistic regression models are developed using the case-con-
trolled data with three different TTCs”. The odds ratios
estimated by the regression models are used to quantita-
tively evaluate the impacts on rear-end crash risks. Gen-
erally, logistic regression models are often used to exam-
ine the relationship between explanatory variables and a
discrete response variable. In this study, the response
variable Y takes two values: Y =1 for crash risk cases and
Y =0 for non-risk cases. The logistic regression model is
expressed as

Logit(P(Y=1)) =10g(%) =B, +Bx (2)

where P(Y = 1) represents the probability of crash risk
occurrences; x represents different car-following types; B,
is the coefficient of the explanatory variable; 3, is a con-
stant. Note that, although other factors may be related to
the rear-end crash risks, only the different car-following
types are focused on due to our study aim.

2 Data Analysis Results and Discussion

2.1 Results of logistic regressions

The logistic regression models are specified using
R3.2.5 software. The results of logistic regressions with
three TTC® values are given in Tab. 2. Type 1 (C-C)
car-following pattern is used as the reference level and the
odds ratios are calculated to quantify the impact of other
three types. The P-value shows that all the explanatory
variables significantly affect rear-end crash risks.

Tab.2 Results of the logistic regression for three TTC”

Odds ratio (95%

Models Parameter Coefficient 8 0dds ratio e# ) . Z value P value
confidence interval)

By (intercept) —-1.441 0.237 [0.232,0.242] -136.100 <0.001

) B, (Type 2 vs. Type 1) ~2.146 0.117 [0.088,0. 151] ~15.650 <0.001

TTC™ =25 B> (Type 3 vs. Type 1) 1.427 4.167 [3.869, 4. 488] 37.710 <0.001

B3 (Type 4 vs. Type 1) -0.882 0.414 [0.292,0.570] -5.180 <0.001

By (intercept) -2.887 0.056 [0.055,0.056] -462.033 <0.001

. B, (Type 2 vs. Type 1) -2.109 0.121 [0.103,0. 142] -25.419 <0.001

TTC™ =35 B> (Type 3 vs. Type 1) 0.951 2.588 [2.471,2.709] 40. 544 <0.001

B3 (Type 4 vs. Type 1) -1.064 0.345 [0.275,0.427] -9.471 <0.001

B, (intercept) -1.372 0.254 [0.251,0.256] -271.980 <0.001

. Bi(Type 2 vs. Type 1) -1.926 0. 146 [0.130,0.162] -34.240 <0.001

TTC™ =4 B,(Type 3 vs. Type 1) 0.679 1.973 [1.886,2.062] 29.860 <0.001

B3 (Type 4 vs. Type 1) -1.338 0.262 [0.216,0.316] -13.810 <0.001

1) TTC threshold is 2 s

Type 3 (T-C) is taken as an example. The probability
of crash risk occurrences of Type 3 is B, + 8, and that of
Type 1 is B,. Thus, the probability difference of these
two types is 8, and the odds ratio of Type 3 is e’ =
4.167. The odds ratio indicates that the rear-end crash
risk of Type 3 is 3. 167 times higher than that of Type 1.
One possible explanation is that lane-changing, such as
the cut-in behavior, occurs frequently at the weaving sec-

tion. Compared to cars, the following truck has inferior
braking ability, resulting in larger speed differences and a
smaller net gap with the leading car. The odds ratios of
Type 2 (C-T) and Type 4 (T-T) are only 0. 117 and
0.414, respectively. Both odds ratios smaller than 1 indi-
cate that the rear-end risks of Type 2 and Type 4 are low-
er than that of Type 1. The possible explanation may be
also related to the different operational conditions in a
weaving section. The following car in Type 2 notices the
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unsafe condition caused by the leading truck. Then, it
may maintain a larger gap distance with the truck before-
hand to avoid the rear-end crash risks. Moreover, the
swift response and superior decelerating ability also pro-
tects cars from rear-end crash risks even if the cut-in be-
haviors of adjacent vehicles occur suddenly. However,
for Type 4, due to the inferior speed ability of trucks, the
velocity differences between two successive trucks may be
smaller than those of two cars. The small speed differences
may be the reason for a safer performance. All these possi-
ble reasons will be investigated in the later section.

2) TTC threshold is 3 s

The result of TTC" of 3 s is similar to that of 2 s. The
odds ratio for Type 3 is 2. 588, which indicates that the
rear-end crash risk of it is 1. 588 times higher than that of
Type 1. The odds ratios of Type 2 and Type 3 are also
smaller than 1, which are 0. 121 and 0. 345, respective-
ly. The smaller odds ratios also indicate the lower rear-
end crash risks of Type 2 and Type 3.

3) TTC threshold is 4 s

When TTC"™ is 4 s, the odds ratio for vehicle following

risk are 0.973 times higher than that of Type 1. The odds
ratios of Type 3 decrease from 4. 167 to 2. 588 and to
1.973, with the increased TCC*. The odds ratios of Type
2 and Type 3 are 0. 146 and 0.262, respectively, which also
indicate the lower rear-end crash risks of Type 2 and Type 3.

2.2 Analysis of explanatory factors

Similar results can be obtained from the above logistic
regressions with three different TTCs". At the freeway
weaving section, Type 3 has a larger rear-end crash risk
compared with Type 1, while Type 2 and Type 4 have
smaller risk. In order to investigate the possible causes,
the detailed data of TTCs, speed differences and net gaps
are analyzed.

As shown in Fig. 3, the histograms were given for the
three factors. It is clear that the TTC values of Type 2 are
larger than those of Type 1 from the distribution trend.
The same result can be found for Type 4. However, the
TTC values of Type 3 are smaller than those of Type 1,
which are consistent with the results of the logistic regres-
sions. The descriptive statistics in Tab. 3 also verify the

Type 3 is 1. 973, which indicates that the rear-end crash  results.
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Fig.3 Histograms of TTC, speed difference and net gap. (a) TTC of Type 1 vs. Type 2; (b) TTC of Type 1 vs. Type 3; (c) TTC of
Type 1 vs. Type 4; (d) Speed difference of Type 1 vs. Type 2; (e) Speed difference of Type 1 vs. Type 3; (f) Speed difference of Type 1 vs.

Type 4; (g) Net gap of Type 1 vs. Type 2; (h) Net gap of Type 1 vs. Type 3; (i) Net gap of Type 1 vs. Type 4
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Tab.3 Descriptive statistics of TTC, speed difference and net gap

Type TTC/s Speed difference/(m + s~') Net gap/m
Mean Median  Standard deviation Mean Median  Standard deviation Mean Median  Standard deviation
Type 1 22.02 12.51 25.52 1.28 0.95 1.21 12.62 15.49 11.01
Type 2 35.40 23.96 31.15 1.10 0.77 1.09 23.92 25.14 11.31
Type 3 20.97 11.50 25.92 1.41 1.08 1.27 17.30 12.59 15.42
Type 4 31.72 21.06 29. 81 1.24 0.97 1.05 26.52 21.88 16.34

The speed differences indicate that Type 2 has smaller
speed differences than those of Type 1. Due to its superior
accelerating and braking abilities, the following cars of
Type 2 can maintain small speed differences with the lead-
ing trucks, compared with Type 1. The smaller differences
of velocities are one of the contributing factors to the lower
rear-end crash risks. The mean and median of speed differ-
ence of Type 2 are 1. 10 and 0.77, smaller than 1.28 and
0.95 of Type 1, respectively.

Fig. 3 also shows that the velocity differences of Type 3
are larger than those of Type 1. At weaving sections, fre-
quent lane-changes often lead to sudden accelerations and
decelerations of the leading car. However, the following
truck with inferior vehicle performance cannot respond to
hazardous traffic conditions in time. Therefore, the speed
difference between the successive two vehicles is larger
than that of Type 1. A similar result can be found for Type
4, while the difference between Type 1 and Type 4 is not
so large as that between Type 1 and Type 3.

The differences of net gap are more apparent when
comparing the other three types with Type 1. In the per-
spective of the distribution trend, Type 2 and Type 4 have
larger net gaps than Type 1. The average net gaps of
those two types are 23.92 and 17. 30, larger than 12. 62
of Type 1. The result is intuitive because the leading
trucks cause restricted visibility and compel the following
cars or trucks to maintain larger net gaps to avoid acci-
dents.

However, Type 3 has smaller net gaps than Type 1. At
the weaving section, the large net gaps between the fol-
lowing trucks and leading cars will provide cars on adja-
cent lanes with accepted gaps for lane-changing. There-
fore, trucks have to maintain smaller gaps to guarantee
their operations. When the leading vehicles are trucks,
such as Type 2 and Type 4, adjacent vehicles can recog-
nize the danger of cut-in behaviors and avoid driving into
the more hazardous conditions.
gaps of these two types can be maintained large enough.
Considering the combinations of the larger speed differ-
ences and the smaller net gaps, the TTC values of Type 3
are much lower than those of Type 1. This may be a good
explanation for the high rear-end crash risks of T-C vehi-
cle following types.

Consequently, the net

3 Conclusions

1) The rear-end crash risk of Type 3 is 3. 167 times
higher than that of Type 1 when TTC" is 2 s. However,

the odds ratios of Type 2 and Type 4 are smaller than 1,
which represent safer conditions compared with Type 1.
Similar results are also found when the TTC" is 3 or 4 s.

2) Three explanatory factors are then investigated to
figure out the in-depth reasons. It is clear that Type 3 has
the largest speed differences and smallest net gaps, which
cause the largest TTC values.

3) The results of this study reflect the mechanism of
rear-end crash risks of different car-following types at the
freeway weaving section. The speed differences and net
gaps of different car-following types are crucial factors for
the rear-end crash risks.
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