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Abstract: To increase airspace capacity, alleviate flight delay,
and improve network robustness, an optimization method of
multi-layer air transportation networks is put forward based on
Laplacian energy maximization. The effectiveness of taking
Laplacian energy as a measure of network robustness is
validated through numerical experiments. The flight routes
addition optimization model is proposed with the principle of
maximizing Laplacian energy. Three methods including the
depth-first search ( DFS) algorithm, greedy algorithm and
Monte-Carlo tree search ( MCTS) algorithm are applied to
solve the proposed problem. The trade-off between system
performance and computational efficiency is compared through
simulation experiments. Finally,
airport network ( CAN) is conducted using the proposed
model. Through encapsulating it into multi-layer infrastructure
via k-core decomposition algorithm, Laplacian energy
maximization for the sub-networks is discussed which can
provide a useful tool for the decision-makers to optimize the
robustness of the air transportation network on different scales.
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a case study on Chinese

A ir transportation network ( ATN) is one of the most
important and critical infrastructures in today’s
global economy. It is responsible for the transportation of
millions of people every day and still expects to expand in
the future. The rapid growth of air traffic demand on the
current air transportation network will lead to serious
problems such as flight delays, airspace congestion, and
flight cancelation due to limited airport resources and air-
space capacities. Hence, more robust air transportation
networks are required to sustain increasing travel demand,
which is able to endure the failure of airports and routes.

In recent years, there has been a growing concern in
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the air transportation network and assessment of its ro-
bustness. Most of these studies applied the complex net-
work theory to characterize the topological structure and
the dynamic behavior of air transportation networks. In
these studies, airports are denoted by nodes and flights
between airports are denoted by edges. Guimera et al. "
found that the worldwide airline network ( WAN) is a
scale-free network with small-world properties. Barrat et
al. ! studied the correlations between weighted quantities
of the WAN and found a strong correlation between the
traffic flow and the network’s topological properties.
Zhang et al. "' investigated the development of the Chi-
nese airport network, including the topology, the traffic
and the interplay between them. Cardillo et al. ¥ pointed
out that the air transportation network is a multilayer net-
work. The characteristics and properties of different lay-
ers may vary from each other.

More recent work has examined the reliability of the air
transportation network facing either errors or attacks. Lor-
dan et al. " presented a methodology for the detection of
critical airports in the global ATN and compared the ef-
fectiveness of several node selection criteria to effectively
attack the network. Wandelt et al. " proposed a dynamic
robustness measure considering the rerouting of the pas-
sengers and presented techniques for efficient analysis of
the network attack. Wijdeveld'” made a detailed study of
the robustness of both the airline networks and alliance
networks in Europe. Most of this research simulates a
random attack or intentional attack on the network and
evaluates the robustness through network metric such as
the largest giant component, clustering coefficient, effi-
ciency, etc. However, a very limited number of studies
focus on topology optimization. Dunn et al.' adopted
two strategies to improve the resilience of air traffic net-
works to spatial hazard. Wei et al. " proposed solving
the flight routes addition problem by maximizing the alge-
braic connectivity. Yang et al. """ first introduced Lapla-
cian energy to air transportation networks, which is con-
sidered to be a fairness measure of the network.

Inspired by previous research, in this paper, we intend
to measure the robustness of the air transportation network
with a flight routes addition challenge by testing Lapla-
cian energy. Three algorithms are applied to search for



342

Zheng Yue, Li Wenquan, Qiu Feng, and Cao Xi

the maximum Laplacian energy and the corresponding op-
timal network design. By dividing the ATN into multi-
layer networks, the optimal route addition strategies for
different layers are achieved by the proposed algorithm.
The results can provide design strategies for the future de-
velopment of the air transportation network.

1 Problem Formulation
1.1 Laplacian energy for air transportation network

A graph G = (V, E, W) is used to describe the air trans-
portation network. The vertex set V={v: i=1,2, ...,
n}; n= \ \% \ denotes the number of distinct airports, and
the edge set E=(e;:i=1,2,...,m); m= \ E \ represents
the number of direct flight routes between pairs of air-
ports. Each edge e = (v, v;) is attached with a weight w,,
to measure the robustness of the flight route. If there is
no edge between v; and v;, w; =0. In most cases, there
is a return route between pair of airports. Therefore, we
assume that G is an undirected network, in which w, =
W

Then, the weighted adjacent matrix A(G) can be ex-
pressed as follows:

0 w, ... w,
0
A =" e (1)
W,y W, ... 0

The weighted Laplacian matrix L( G) is defined based
on the adjacent matrix A(G). Each item [, of L(G) can
be written as

i %

-w,
owy =]
i=1
Assume that G is a weighted network with n vertices,
and A, A,, ..., A, be the eigenvalues of its Laplacian ma-
trix. The Laplacian energy is defined as the sum of the
squares of all the eigenvalues:

E(G) = XX (3)

1.2 Laplacian energy and network robustness

Traditionally, the node connectivity and edge connec-
tivity are the two metrics to evaluate a graph’s robust-
ness. The node (edge) connectivity of a graph is the
minimum number of node (edge) deletions sufficient to
disconnect it.

In order to show the limitation of node (edge) connec-
tivity metric and the better performance of the Laplacian
energy, two different topologies are shown, where Fig. 1
(a) is the line topology and Fig. 1(b) is the star topolo-
gy. It is clear that the node connectivity and edge connec-

tivity for both topology are 1. However, the star topology
should be more robust because in Fig. 1(b) only the fail-
ure of Node 1 can disconnect the network, while in Fig. 1
(a) either Node 2 or Node 3 fails can cause the network
to disconnect. The robustness features of the two topolo-
gies are intuitively different. However, neither the node
connectivity nor edge connectivity can reflect the differ-
ence between these two topologies. Nevertheless, the
Laplacian energies of Figs. 1(a) and (b) are 16 and 18,
respectively, which show that the star topology is more
robust than the line topology. This example demonstrates
that the Laplacian energy is a finer measurement for net-
work robustness.

4
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1 2 3 4 2 3
(a) (b)
Fig.1 Line topology and star topology. (a) Line topology; (b)

Star topology

We further demonstrate that the weight of the edges al-
so have a direct influence on the robustness of the net-
work through a numerical experiment. In the experiment,
we generate 62 different networks in the same topology
with different weight distributions. These networks are all
scale-free networks with 200 vertices, in which weights
are assigned to one of three types w; = {1,2,3} in differ-
ent proportions. The weight of links represents its invul-
nerability. We assign weight 1 to the edges with the edge
failure probability of 5%, weight 2 to the edges with the
edge failure probability of 3% and weight 3 to the edges
with the edge failure probability of 1% . Then the edges
deletion process is conducted for every network in 1 x 10*
trails. We count the times of network failure ( network
becomes disconnected) in terms of Laplacian energy. The
results are shown in Fig.2. It can be easily observed that
the network failure times has a negative linear correlation
with the Laplacian energy. This is because a greater
Laplacian energy represents a high percentage of large
weight, which leads to a high invulnerability of the net-
work. Thus, the Laplacian energy can be considered to
be a good measurement for the robustness of weighted
networks.

1.3 Laplacian energy maximization for flight routes
addition problem

In real-life operation, it is actually impossible to re-
build an entirely new air transportation network for both
regional and national scopes. Instead, in order to main-
tain and improve the robustness of the existing network,
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Fig.2 Network failure times in terms of Laplacian energy

adding a few routes (edges) restricted by airline budgets,
weather conditions, etc., is imperative. The Laplacian
energy, which can be regarded as one kind of graph en-
tropy''"", takes into account not only the local environ-
ment but also the global environment information of the
network. Hence, it is possible to use the Laplacian ener-
gy to measure and optimize the robustness of the air trans-
portation network, which has been proved to be a reliable
measurement for the robustness of both unweighted and
weighted networks. The goal of this research is to find
the optimal strategy for the selection of the potential edges
which can maximize the Laplacian energy of the air trans-
portation network.

As discussed early in this paper, G = (V, E;) is the
graphical description of the existing weighted air transpor-
tation network, where the node set V is the collection of
all the airports in this network and the edge set E, con-
tains the existing edges between airport pairs. The size of
set V is n and the size of E, is m. The objective is to
maximize the Laplacian energy E, (G) with a fixed num-
ber k of edge additions based on E,. The edges to be add-
ed are given in the pre-determined set P. All the weights
of the edges in set E, and P are non-negative integer val-
We denote the routes to be

ues between w_. and w

added as a set of AE. For the addition edges, as it may
be impossible to establish a new route between two ex-
tremely close airports, the distance of the candidate route
D ( AE,) should be longer than the minimum distance
D, ... Therefore, the flight routes addition problem can be

expressed as

max E, (G(V,E, + AE)) (4)
s. t. |AE| =k

AECP PNE, =

w,; € {0, {w i W H

D(AE,)) >D,,, i=1,2,...,k

2 Algorithms for Solving the Problem

For the given air transportation network G(V, E;)), the

goal of the optimization is to add k edge from set P with
the maximal E, (G(V, E, + AE)). According to the proof
by Wei et al. ™', the flight routes addition problem is NP-
hard. With the increase of | P | and k, the computing
time is extremely long. Therefore, two heuristic algo-
rithms are proposed for solving this problem and the
depth-first search ( DFS) technique is also used for the
comparison of the optimal solution.

2.1 Depth-first search algorithm

Solving the flight routes addition problem is very com-
putationally expensive. However, since we only search
for the best addition of a given length k, it is capable of
recursively implementing a standard DFS technique,
which always adds k routes. DFS can always find the op-
timal solution of the problem, and thus can be used as the
baseline for the evaluation of the other two heuristic algo-
rithms introduced later. The drawback of the DES is that
the time complexity increases exponentially with the size
of k. Therefore, the DFS can only be used for a small
network and a limited routes addition problem.

2.2 Greedy algorithm

The greedy algorithm is an algorithm that follows the
problem solving heuristic of making the locally optimal
choice at each stage with the hope of finding a global op-
timum. In many problems, a greedy strategy probably
does not produce an optimal solution, but it may yield
locally optimal solutions that approximate a global opti-
mal solution in a reasonable time. For the flight routes
addition problem, we add one edge e,; which triggers
the largest increase in E, ( G) for each iteration. The
loop terminates when k edges are added to the original
network.

As it is proved by Qi et a
can also be described as

1."", the Laplacian energy

E(G) = ixf +2 Y W, (5)
i=1 i<j

with x; = iwi.j = z w
i=1

ueN(v)

where N(v,) is the neigh-

vou 2

borhood of v,.

Based on Eq. (5), we can easily prove that after the
addition of edge ¢, ;, the increase of the Laplacian energy
(AE,),; can be expressed as

(AE)),; =2w, (x(v) +x(v,))) +4w;, (6)

As it can be seen from Eq. (6), the increase of E, (G)
is associated with the weight of the additional edge and
the sum weight of the vertices that constitute the addition-
al edge. Hence, we can design the greedy method based
on the equation which always selects the edge e, ; from P
with the maximal (AE, ), for each step. The complete
algorithm is listed in Algorithm 1.



344

Zheng Yue, Li Wenquan, Qiu Feng, and Cao Xi

Algorithm 1  Greedy algorithm
Given graph G = (V, E), candidate edge set P and
all the edges weights in E, and P

Let E=E,
for 1 to k do

2
e = arglgax 2wi._/.(x( v,) +x( v_/.)) +4w,.,j
E=E+e ;;P=P-e¢,
end for

Output G=(V, E)

2.3 Monte-Carlo tree search (MCTS) algorithm

As an alternative to the exhaustive search, another
search heuristic method named the Monte-Carlo tree
search algorithm which was recently introduced in general
game playing'"”
dition problem. The algorithm consists of two parts: ex-

was used for solving the flight routes ad-

ploration and exploitation. In the first phase, the game
tree is explored by executing several random runs to eval-
uate the scores of each move. After several random runs,
many typical moves are associated with stable scores.
These scores are utilized in the exploitation phase. Then
random runs are executed again, but this time scores are
taken into account for deciding which move to make.

We adapt the idea behind MCTS to find a promising
solution, which contains k routes to be added to the air
transportation network. Our algorithm is shown in Algo-
rithm 2. In the exploration phase, some random solutions
are performed (Lines 2 to 7). For each potential solution
A, we record how much addition of a route upgrades the
Laplacian energy (encoded in R, Line 5). Here, R is the
map from route indices to AE,. The overall result for all
candidate solutions is stored in RES. The second part of
the algorithms is the exploitation (Lines 8 to 26). First,
we group all AE, per route (Lines 10 to 15). After-
wards, we compute the average AE, for each candidate
route (Lines 16 to 18). Finally, we run new random so-
lutions with the average AE, as weights for the random
choice of routes (Lines 19 to 25). Intuitively, the explo-
ration phase assigns weights to the routes (higher weights
imply larger AE;) and the exploitation phase picks ran-
domly routes but with a bias towards a higher weight. It
is worth mentioning that the number of the iterations in
exploration and exploitation has a considerable impact on
the accuracy of the best solution. The larger the number
of iterations, the closer the solution is to the optimum.

Algorithm 2 Monte-Carlo tree search (MCTS) al-

gorithm
1 LetRES=[];
2 //Exploration phase
3 forle(l1,2,....,X) do
4 Create a random routes addition list A of length k
5 Let R be the evaluation of A
6 RES. append(R)

7 end for

8 //Exploitation phase

9 while not finished do

10 WR =[]

11 forle(l1,2,...,X) do

12 forl,e(1,2,...,k) do

13 WR[RES[/]. route] . append (RES[/]. AE,)

14 end for
15 end for
16 forle(1,2,..., |P])
17 WR[I] = AVG(WR[I])
18 end for

19 1let RES=[]; A=]]

20 while len(A) <k do

21 Random pick a route u from P with probability
WR[u] which has not yet occurred in A

22 A. append(u)

23 end while

24 Let R be the evaluation of A

25 RES. append(R)

26 end while

2. 4 Algorithms comparison

Simulations are conducted to compare the performance
and computation time of the DFS algorithm, greedy algo-
rithm and MCTS algorithm for the flight routes addition
problem. A small-word network with n =20 is applied in
our experiments since the DFS takes an extremely long
computation time when the size of the candidate edge set
P is large. The generated network is denoted as G(V,
E,). The existing edges in E, and the candidate edge set
P are assigned with three types of weight w,; = {1,2,3}
which represent the robustness of the edges.

We evaluate the performance (measured by AE,) and
computation time of the three algorithms with different
numbers of k. The results in Tab. 1 show that the DFS al-
ways yields the best performance. However, the running
time increases exponentially with k. It takes a few hours
for computation when k is 5. Hence, the DFS can only
be used for a limited route addition problem and here it is
taken as the baseline for the evaluation of the other two
heuristic algorithms. The performance of the MCTS in-
creases with the increase in the number of iterations in ex-
ploration and exploitation, but the running time needs to
be sacrificed to achieve a better solution. The MCTS with
1 x 10° runs has the second best performance with an ac-
ceptable running time. The greedy algorithm has the
worst performance when k is less than three. However,
with the increase of k, the performance of the greedy al-
gorithm gradually overtakes that of the MCTS with 1 x
10 runs when k =3 and the MCTS with 1 x 10* runs
when k =6.

In summary, no matter what k is, the DFS always
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yields a better solution than others do. However, the long
computation time is unacceptable when k is above 4.
When k is small, the MCTS with 1 x 10° runs shows a
similar performance to the DFS. If we select a small
number of edges from P, the MCTS should be selected to
maximize the network robustness. If k becomes larger,
the greedy algorithm should be adopted to provide the effi-
cient computation speed with an acceptable performance.

Tab.1 Comparison of the performance and computation time
of the three algorithms

Number of additional routes

Method Time/s
2 3 4 5
DFS1 0.02 108"
Depth- DFS2 0.76 108 * 228~
first- DFS3 17.38 108 * 228* 366*
search DFS4 286.98 108" 228* 366" 516*
DFS5 15258.84 108 * 228* 366" 516* 654*
MCTSI1000 _
2.91 108" 228* 318 450 522
1000
MCTS10000 _
MCTS 14.19 108" 228" 348 474 570
10000
MCTS100000 _
132.41 108" 228* 366" 510 634
100000
Greedy algorithm 0.06 108* 216 336 456 612

Note: = means the best performance.

3 Case Study

In this section, the Chinese airport network ( CAN) is
investigated as the case study. Differently to the previous
work” ™
tures which can give some insights to the underlying
properties of different sub-networks. Then, we give the
advice that the top 5 routes should be added within the
layer and between two layers to increase robustness.

we divide the CAN into multi-layer infrastruc-

3.1 CAN introduction

According to the data provided by the civil aviation ad-
ministration of China (CAAC) in 2015, there are 200 air-
ports and 1 755 air routes in the CAN. We first define the
CAN as an unweighted and undirected network whose
nodes are the airports and the edges are the air routes be-
tween two airports. To represent the network, the adja-
cent matrix A is temporarily taken as a binary adjacent
matrix, in which element a, =1 when there is a flight
link between city-pair i and j and a; =0 otherwise. k; re-
presents the degree of node i.

3.2 CAN decomposition

A previous study'"” discovered that the airport network
can be divided into multi-layer networks which can reveal
some underlying properties of the air transportation net-
work. Here, we analyze the CAN through the k-core de-
composition algorithm, which is used to exact the most
densely connected community. The steps of the algorithm

can be expressed as follows:

Step 1  All the nodes with k;, =1 are removed. These
nodes form the periphery layer. The nodes that become
isolated after the removal process are also included in the
periphery layer.

Step 2
(p=2,3,...)are removed, if the removal in step p trig-
gers a new node with the degree less than p, it is removed
in the current iteration as well (k; is the degree of node i

In the next iterations, all the nodes with k', =p

after removing nodes from previous iterations) .

Step 3 The algorithm stops in iterations p,  when all
nodes are removed from the network. In the CAN, p_.
=26. The nodes removed in iterations p_ . form the core
layer. Except for the nodes in the periphery layer and
core layer, all the rest of the nodes form the bridge layer.

As it is shown in Fig. 3, there are 35 airports in the
core layer which are 17.9% of airports in the CAN.
These airports are mainly located in eastern China and are
densely connected and bear 66.43% of the total traffic
flow. Most cities are located in provincial capital cities or
the economically developed cities in China.

Fig.3 The multi-layer structure of the CAN

The bridge layer contains 148 airports which include
75.5% of the airports in China. Most of airports are lo-
cated in Tier 2 and Tier 3 cities in China. The traffic flow
distribution is quite different from the core layer. Only
3.88% of the total traffic flow operates within the bridge
layer every week while 28. 94% of the total traffic flow
connects the core layer and bridge layer.

In the periphery layer, there are only 13 airports which
account for 6. 63% of the airports in the CAN. As is il-
lustrated in Fig. 3, all the airports are located in remote
areas and there are no flights within this layer at all. The
airports in this layer tend to connect with the airports in
the bridge layer more than with those in the core layer.
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3.3 Flight routes addition for multi-layer networks

The current CAN is weighted based on the historical
flight departure delay information obtained from January
19, 2015 to February 19, 2015, which includes more
than 48 x 10* flight data. The edge failure probability can
be estimated from the ratio of the flights which are de-
layed more than one hour in both directions to the total
flights. We assign weight w, =3 to the edges with failure
probability in [0, 5%), weight w, =2 to the edges with
failure probability in [5%, 10%) and weight w, =1 to
the edges with failure probability in [10%, ). We as-
sume that the weight of a candidate route to be added
equals the mean value of the weight of two related air-
ports.

Since the MCTS algorithm has a better performance
than the greedy algorithm for a small number of routes
addition, we employ it to select the top five routes for the
multi-layer networks. D_. here is set to be 200 km. The
routes to be added within the periphery layer and the ones
between the periphery layer and core layer are not taken
into consideration. The top five additional routes for the
four different sub-networks of the CAN are shown in Fig.
4. We can see that each sub-network tends to connect
limited airports. Within the core layer, it tends to add
more routes to Nanchang, while Beijing is preferred be-
tween the core layer and bridge layer. Besides, within the
bridge layer and between the bridge layer and periphery
layer, it is more inclined to connect Xining and Yin-
chuan. The purpose of flight routes addition for different
sub-networks may vary from each other. For example,
the core layer sustains most of China’s traffic flow. The
flight routes addition within the layer can not only
strengthen the backbone of the Chinese network, but also
enhance the mobility for different areas, while the flight
routes addition between the core layer and bridge layer
can reinforce the connection between general airports and

) & A : ] Xining\/ inchuan
Sl R
"7 :Nanchgng \\;\ P

i =

() (b)

~=Yinchuan

XiningN

7

(¢) (d)
Fig. 4 Connection tendencies of different sub-networks.
(a) Within the core layer; (b) Within the bridge layer; (c) The core-
bridge layer; (d) The bridge-periphery layer

the hubs which is of great benefit to shaping the pattern of
the hub-and-spoke structure. These results can help deci-
sion makers to maintain and modify the structure of an
existing regional or nationwide network and design strate-
gies for the future development of the air transportation
network on different scales.

4 Conclusion

In this paper, Laplacian energy is employed to analyze
the flight routes addition problem. Three algorithms are
presented and compared to solve the proposed problem.
Numerical simulations have been made to investigate the
trade-off among the three methods. The DFS algorithm is
used to find the global optimum with a long computation
time. The greedy algorithm can find local optimals in
quite a short time and the MCTS algorithm adapted is em-
ployed to perform a computationally efficient search with
limited route additions. Then, a case study of the CAN is
investigated through encapsulating into the multi-layer in-
frastructure via the k-core decomposition algorithm and
performs route additions for the four sub-networks. His-
torical flight delay data from one month is used for
weighting the corresponding edges. The results can pro-
vide practical advice for the decision-makers to optimize
the robustness of the network on different scales.
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