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Abstract: Let a, b be two generalized Drazin invertible
elements in a Banach algebra. An explicit expression for the
generalized Drazin inverse of the sum a + b in terms of a, b,
a’, b’ is given. The generalized Drazin inverse for the sum of
two elements in a Banach algebra is studied by means of the
system of idempotents. It is first proved that a + b € A" under
the condition that a, b e A*™, aba =0 and ab® =0 and then the
explicit expressions for the generalized Drazin inverse of the
sum a + b under some new conditions are given. Also, some
known results are extended.

Key words: generalized Drazin inverse; Banach algebra;
nilpotent element; quasi-nilpotent element

DOI: 10. 3969/j. issn. 1003 —7985.2017.03. 020

hroughout this paper, A denotes a unital Banach al-
T gebra with 1. For a e A, we use g(a) to denote the
spectrum of a. An element a € A is called quasi-nilpotent
if the spectrum o(a) = {0}. Let A™', A™ and A™" denote
the sets of all invertible, nilpotent and quasi-nilpotent ele-
ments in A, respectively. The Drazin inverse'"' of an ele-
ment a € A is the element x € A, which satisfies the fol-
lowing three equations:

ax=xa, xax=x, a-a’xeA"

The Drazin inverse of a € A is denoted by a” if it exists
and it is unique. The concept of the generalized Drazin
inverse in a Banach algebra was introduced by Koliha''.
An idempotent element p € A is a spectral idempotent of a
cAif ap=paecA™ and a + p e A”'. The element p
above is unique if it exists and it is denoted as a”. If a”
exists, the generalized Drazin inverse of an element a € A
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is defined as @ = (a +a™) "(1 =a™) =(1l =a") (a +
a™) ~'. Let A’ denote the set of all generalized Drazin in-
verse elements in A. It is obvious that ™ =1 — aa’. From
the definition, the generalized Drazin inverse of a € A is
also characterized as the unique element x € A satisfying

2 qnil
ax=xa, xax=x, a-a xeA

! in asso-

The Drazin inverse is first studied by Drazin''
ciative rings and semigroups. The generalized Drazin in-
verse is investigated for rings by Hartwig"' and for Ba-
nach algebras by Koliha™. The Drazin inverse and the
generalized Drazin inverses and their applications are very
important in various applied mathematical fields such as
singular differential equations, singular difference equa-
tions, Markov chains, iterative methods and so on"™™'.

In 1958, Drazin'" first studied the representation for
the Drazin inverse of the sum of two Drazin invertible el-
ements in a ring and proved that (a + b)” = a” + b° under
the condition ab = ba =0. Later, Koliha™ gave the repre-
sentations of (@ + b)* under the same condition in a Ba-
nach algebra. In 2001, Hartwig et al. "’ gave the formula
(P + Q)" under the condition PQ =0. Cvetkovié-Ili¢ et
al. '™ generalized the result of Ref. [7] to bounded linear
operators in an arbitrary complex Banach space. In 2004,
Gonzilez and Koliha™ gave the formula for (a + b) ¢ un-
der the conditions ab™ =a, a"b =b and b"aba™ =0 which
are weaker than ab = 0 in Banach algebras. In 2010,
Deng and Wei " derived a result under the condition PQ
= QP, where P, Q are bounded linear operators. In
2011, Cvetkovié-Tli¢ et al. """ extended the result of Ref.
[10] to Banach algebras. Liu et al. U2 deduced the ex-
plicit expressions for (a + b)” under the conditions a’b =
aba and b*a = bab, where a and b are complex matrices.

Recently, Zou et al. 3

studied the corresponding results
for the generalized Drazin inverse in Banach algebra.
More results on the generalized Drazin inverse can be
found in Refs. [ 14 — 15]. In this paper, we first prove
that @ + b € A™ under the condition that a, b e A", aba
=0 and ab> =0. Then, we introduce some new condi-
tions and give the explicit expressions for the generalized
Drazin inverse of the sum a + b, where a, b are general-
ized Drazin invertibles in A. As corollaries, many results
in Refs. [7 —9, 14] are generalized.

Let P = (p,, p,, ..., p,) be a total system of idempo-
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tents in A if p,p, =6, p, for i,j=1,2,...,n and Zp,. =1.
i=1

Given a total system P of idempotents in A, we consider
the set M, (A, P) CM (A) consisting of all matrices M =
[a;];,., with elements in A such that a;  p,Ap, for all i,
je{1,2, ..., n}. Following Ref. [9], we know that
M, (A, P) is a unital Banach algebra with unit. Also, it is
proved that ¢: A—M, (A, P) given by

PXpy PP, D\ P,

X xp, xp,

o) =| PP PP PP
p,xp, PP, D,xp,

is an isometric Banach algebra isomorphism.

If ae A is a generalized Drazin invertible, let p = aa’
and the total system is P = (p, 1 —p). Then, we have
the following matrix representations:

a:[a“ 0 ], ad=[a|_|] 0], a’

0 0
0 ay 0 0 ]

“lo 1
where a,, e (pAp) "' and a,, e ((1 —=p)A(1 =p)) ™.

1 Preliminary

Lemma 1" Let p’ =p, x,yecA and let x = [8 lca]

b
r=[.
—p) for x and (1 - p, p) for y.

1) fae (pAp)®and be ((1 —p)A(1 —p))°, then x,y
e A’ and

0 . .
] relative to a total system of idempotents (p, 1
a

d

e[y ah

where u = z (a)"Peb"b™ + 2 aa"c(bH"? —a‘ch" .

n=0 n=0

¥ 0
[u ad] (1)

2) If xe A'[resp. ye A'] and a e (pAp)°, then b e
(1 =-p)A(1 —p))d, xd[resp. yd] is given by Eq. (1).

Lemma 2” Leta,beA®™. If ab=0, thena+b e
Aqnil.

Lemma 3" Leta,beA®and ab =0, thena +b e A’
and

(a +b)d = bnzbn(ad)nﬂ + z(bd)nﬂana—n'
n=0 n=0

Let a, b € A® such that a’b = aba and
b’a = bab, then the following conditions are equivalent:

Lemma 4

a+beA’, 1+a'beA’, c=aa’(a+b)bb’ e A"
In this case, we have
(a +b)* =a*(1 +a'b) +a"b(aH)*((1 +a’b))* +

i (Y™ (-a)"a™ + i (n +D)b™a(bH"™?(-a)"a"

n=0 n=0

2 Main Results

In this section, for a, be A, we will investigate some
formulae of (a +b)® in terms of a, b, a* and b". Before
proving our main results, we need to prove the following
result.

Lemma5 Leta,beA™. If aba =0, ab’ =0, then a
+beA™.

Proof From a, be A™, it follows that a*, b* ¢ A™.
The condition aba =0 implies that ab, ba e A™ C A™.
Since ba e A™, b* ¢ A™ and bab® =0, we have ba + b
e A™' by Lemma 2. Similarly, we can obtain a’ + ab e
A™ . Also, note that (a +b)> =a* +ab +ba +b* = (a" +
ab) + (ba +b*) and (d’ + ab) (ba +b*) =ad’ba + a’b* +
ab’a +ab’ =0, we deduce that (a + b)* = (d’ + ab) +
(ba +b*) e A™ by Lemma 2 again, which yields a +b e
Aqnil.

Next we start with an important special case for our
main theorem.

Theorem 1 Letac A™, becA’. If ab™ =a, b"aba =
0 and b"ab® =0, then a + b A® and

(a+b)" =b"+ 2 (b")"a(a +b)" (2)

Proof First, assume that b € A*", then b" =1, aba
=0 and ab’ =0. By Lemma 5, a + b e A™. Eq. (2)
holds as (a +b)* =0. If b g A™, then p: =bb*#0. We
use a matrix representation relative to the total system P
=(p, 1 -p) =(bb", b™) of idempotents, where p #0.

all a12

b, 0
Wehaveb:[ ]anda:

0 b,

(pAp) ', by e ((1 =p) A(1 = p)™.
condition ab™ = a in a matrix form, we prove that a,, =0
and a,, =0. For the sake of simplicity, we write a,: =a,,
b, a

0 a,+b,

Similarly, if we express the condition b"aba = 0 and

], where b,

ay Ay

Expressing the

and a,: = a,,. Then we have a + b = [

b™ab’ =0 in a matrix form, we can prove that a,b,a, =0
and a,b; =0. Since a e A™, then a, e ((1 - p)A(1 -
p)*™. By Lemma 5, a, +b, e ((1 =p)A(1 = p))*".
Using Lemma 1, we can obtain that a + b e A" and

b a bt u
d _ 1 1 _ 1
(a+b) _[0 a2+b2] _[ 0 0]

where u = Z (b;"Y"?a,(a, +b,)". Computing the right
n=0

side of Eq. (2) in the matrix form, we can prove that Eq.
(2) holds.

Corollary 1" Let a e A™, b e A’. If ab™ = a and
b"ab =0, then a +b e A® and

(a+b)" =b" + 2 (b*)"a(a +b)"

n=0
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Example 1 Let A be the algebra of all complex 3 x 3
01 0
matrices, and let a =b = [0 0 1]. Then we can check
0 0 0
that ¢ and b satisfy a € A™, ab™ =a, b"aba =0 and
b"ab’ =0, but b™ab#0.
Next, we present our main theorem, which is a gener-
alization of Theorem 3. 5 in Ref. [9].
Theorem 2 Let a, b ¢ A", If ab™ = a, a"b = b,
b"abaa™ =0 and b"ab’a™ =0, then a +b e A® and

(a +b)* =b'a™ +b"a" + Z(bd)“za(a +b)"a" +

n=0

N b"(a +b)'b(a’)"? = Y (b")"?a(a +b)"ba’ -
n=0 n=0

2 bda(a +b)nb(ad)n+2 _ Z z (bd)k+2a(a +b)n+k+lb(ad)n+2
n=0 n=0 k=0
(3)

Proof If ae A™, then the conditions satisfy Theorem
1. By Theorem 1, Eq.(3) holds. If a eA™", then b =
a"b=0=5b" and b" =1. Obviously, Eq. (3) holds.
Thus, we assume that a is neither quasinilpotent nor in-
vertible, and use the matrix representation of elements
relative to the total system P =(p, 1 —p) = (aa®, a™) of
0

] and b

a
idempotents, where p7#0. We have a = [ :
aZ

bl2

_ [bn

- b2] bZZ
)™ . Since a"b = b, we obtain that b,, =0, b, =0.
Write b,: =b,,, b,:

], where a, e (pAp) ', a, e ((1 =p)A(1 -

=b,,. Using Lemma 1, we have

0 0 0 0 0
bz[bl bz]’ bd:[(bg)zb, b;‘]’ bﬂ:[—liib, b;—p]

Since ab™ = a, we have a,b5 b, =0 and a,b] =a,. The
conditions b"abaa™ = 0 and b"ab’a™ =0 give that b]
a,b,a, =0 and b] a,b; =0. Since a, e ((1 = p)A(l -
)™, a,b] =a,, b] a,b,a, =0 and b] a,b; =0, apply-
ing Theorem 1 to the elements a,, b,, we conclude that a,
+b,e((1 -p)A(1 -=p))* and

(ay +b)" =Dy + Y (b)) "ay(a, +b,)"

n=0

By Lemma 1, we have

a 0 ¢ a 0
(a +b)¢ = [T ]:[‘ d]
bl a2 +b2 w ((12 +b2)
wherew = Y (a, +b,)"(a, +b,)"b,(a]" )" - (a, +
n=0

b,)‘b,a;". Since a,b; =0, we have

(a, +b)™ =1 —(a, +b,)(a, +b,)" =1 —(a, +b,) +

(b1 + 3 (B a(a, +b)") =1 =bbi -
n=0

Y (b)) a,(ay, +by)" =by - Y (by)""a,(a, +b,)"

n=0 n=0

And then
w = Zb;(az +l?2)"bl(al'l)”+2 -
n=0
2 2 (bg)kHaz(ClZ +b2)n+kb1(alil)n+z -
n=0 k=0

(b;l + z (b‘z])’l+2a2(az +b,)" )blal_l
n=0
Computing the right side of Eq. (3) in the matrix form,
we can prove that Eq. (3) holds.
Corollary 2 Let a,be A", If ab" =a, a"b =b,
b"aba™ =0, then a + b e A and

(a +b)* =b'a" +b7a’ + 2 (bY"™ala +b)"a™ +

n=0

S b7(a +b)'b(a)"™ = % (b*)"2ala +b)"ba’ -
n=0 n=0

Z b'a(a +b)"b(a")"? - Z z (b a(a +b)"*"b(a’)"*

n=0 n=0 k=0

Proof It is clear that b"abaa™ =0 and b"ab’ =0 by
a"b=>b and b"aba™ = 0. Then, we can complete the
proof by Theorem 2.

Now, we will give another main result which generali-
zes Theorem 2.1 in Ref. [14].

Theorem 3 Let a,beA’. If ba™ =b, a"b"aba =0,
a"b"ab® =0 and a"bb'abb’ =0, then a + b e A* and

(a+b)" =a" + i (a")"?b(a +b)"(a +b)™ +

(a” —adb)( (bd + 2(2)‘1)“2(1((1 +b)") (4)

Proof First, assume that a € A*™, then ¢™ =1, and
the condition gives h™aba =0, b™ab’ =0 and bb'abb" =
0. Since b"ab> =0, then ab® = bb'ab’. So, we have
abb® = bb'abb®. Then, ab™ = a. By Theorem 1, (a +

b)'=b"+ Y (b*)"?a(a +b)". Then, Eq. (4) holds.
n=0

IfaecA™', then ¢" =0 and b = ba™ =0. Clearly, Eq.
(4) holds. Thus, we assume that a is neither quasinilpo-
tent nor invertible. We use a matrix representation rela-
tive to the total system P = (p, 1 —p) = (aa’, a") of
idempotents, where p#0. We have

0 b b
a = [‘(l)l az]’ b = [bn blz]

21 22
where a, € (pAp) ™', a, e ((1 =p)A(1 -=p))™™. Ex-
pressing the condition ba™ = b in a matrix form, we prove
that b, =0 and b,, =0. For the sake of simplicity, we
write b, : =b,, and b,: =b,,. Then, we have
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0 b b
b=, b;]’a”j:[c(l)l azﬁibz]

0 b(by)°

By Lemma 1, b' = [
Y 0o b

] and b" =
p b bg )?
[0 by -p
a"b"ab® =0 give that b] a,b,a, =0 and b a,b; =0. Ex-
pressing the condition a"bb'abb® =0 in a matrix form,
we obtain that b,b; a,b,bs =0. Since b] a,b; =0, then
by a,by =0. So we have a,b5 = b,by a,b5. So, b,b;
a,b,bS = 0 implies that a,b; = 0. Thus, the following
conditions b, e A*, a, e A™, a,b5 =0, b] a,b,a, =0,

by a,b; =0 are satisfied. Hence, we can apply Theorem 1

]. The conditions a"b"aba = 0 and

to obtain an expression of (a, +b,)°.
(az +b2)d = b; + 2 (bg)mzaz(az +b2>n
n=0

By Lemma 1, we prove that

-1

a
(a+b)"= ' .
0 (az"'bz)

v

%

Y (a;')"b,(a, + b,)"(a, + b,)" -

n=0
a b, (a, +b,)".
Computing the right side of Eq. (4) in the matrix
form, we can prove that Eq. (4) holds.
Example 2 Let A be the algebra of all complex 3 x 3

where v =

0 0 0 0 0 0
matrices, and take a = [0 0 O|andb = [1 0 ()].
01 0 01 0

Clearly, ba™ = b, a"b"aba = 0, a"b"ab® = 0 and
a"bb'abb’ =0, but a"b"ab#0.
Remark 1 We define sum S,(a,b) = Zbia"_i +

i=0
n-1
z b""'a'b for n = 0. If the lower limit of a sum is
i=1

greater than its upper limit, we always set the sum to be
0. When aba =0 and ab® =0, we can prove that S, (a,
b) =(a+b)". It can be proved that the (a +b)" in The-
orem 1 to Theorem 3 can be replaced by S,(a,b).
Finally, we will give another main result.
Theorem 4 Leta,beA’. If ab” =a, b™a’b =b"aba
and b"b*a =b"bab, then a + b e A* and

(a+b)d :bd +bﬂ2(_1)n(ad)n+lbn +
n=0
™Y (=1)"(n +1)a"b(a")""b" +
n=0
> (6" a(a +b)"(a +b)™ -

n=0

bdai ( _1)n(ad)n+lbn _

PaY (-1 (0 +Dab(a)™s  (5)

n=0

Proof First, assume that b € A*", then ™ =1, and
the conditions b™a’b = b"aba and b"b’a = b"bab give that
a’b = aba and b’a = bab. By Lemma 4, (a + b)" =
z ( _l)n(ad)l7+lbl1 +
n=0
Eq. (5) holds. If b ¢ A", we use a matrix representa-

tion relative to the total system P = (p, 1 —p) = (bb*,
b™) of idempotents, where p#0. We have

b b, 0

i [ 0 bz]’ ‘"
where b, e (pAp) ™', b,e ((1 =p)A(1 =p))*™. Simi-
lar to the proof of Theorem 1, by ab™ =a, we have

(=1)"(n+1)a"b(a®)"?b".
0

n=

all alz]

ay Ay

bl

0 aq a—iibz]

0
[0 “]avs =]

Since b™a’bh = b"aba and b"b’a = b™bab, we prove b a,
=b,a,b, and @, b, = a,b,a,. By Lemma 4, we have a, +
b, e A" if and only if 1 + b5 a, € A°. Noting that b, e ( (1
-p)A(1 =p))*™  we have b; =0. Then

(a, +b2)d = Z(, (a:)n+l< -b,)" +

Y

Y (n+1)a; b,(ay)"(=b,)"

n=0

Using Lemma 1, we can prove that a + b e A* and

b t_ by
(a+b)d:[01 aza;bz] :[(1) (azf:bﬂd]

where u = Y (b')"a,(a, + b,)"(a, + b,)" -
n=0

b a,(a, +b,)".
Computing the right side of Eq. (5) in the matrix
form, we can prove that Eq. (5) holds.
Example 3 Let A be the algebra of all complex 2 x2
0

matrices,andtakeaz[(]) (])] andb:[_]l 0

]. Clear-

. 10 .0
ly, b ‘[—1 0] and b _[1
check that a,b satisfy ab™ =a, b"a’b =b"aba and b™b’a
=b"bab, but b>a# bab.

0
1]. Then, we can
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