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Abstract: To decrease the impact of shorter product life
cycles, dynamic cell formation problems ( CFPs) and cell
layout problems ( CLPs) were simultaneously optimized.
First, CFPs and CLPs were formally described. Due to the
changes of product demands and the limit of machine
capacity, the existing layout needed to be rearranged to a high
degree. Secondly, a mathematical model was established for
the objective function of minimizing the total costs. Thirdly, a
novel dynamic multi-swarm particle swarm optimization
(DMS-PSO) algorithm based on the communication learning
strategy (CLS) was developed. To avoid falling into local
optimum and slow convergence, each swarm shared their
optimal locations before regrouping. Finally, simulation
experiments were conducted under different conditions.
Numerical results indicate that the proposed algorithm has
better stability and it converges faster than other existing
algorithms.
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s one of the first applications of group technology
(GT) to factory reconfiguration and shop floor lay-
out design, cellular manufacturing systems ( CMSs) are
set-up
time, manufacturing lead time, tooling cost, work in

conducive to reducing material handling cost,

process, lot sizes, throughput times, labor cost and pro-
duction equipment cost. CMSs can also enhance manu-
facturing capability, workers’ satisfactions and flexibility
along with many other advantages'''. A study demonstra-
ted that a suitable layout can reduce 10% to 30% of the
manufacturing cost™ .

Cell formation (CF) and cell layout (CL) (including
intra-cell machine layout and inter-cell layout) are two
basic and important steps in the design of CMSs. Over
the past decades, many researchers have predominantly
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focused on solving the static CFPs,
CMSs. Also, many analytical methods have been devel-
oped as a result of this massive movement. Bhandwale

the first stage in

and Kesavadas'”' presented a new methodology to incor-
porate new parts and machines into existing cellular man-
ufacturing. Nouri et al. ™ introduced a newly developed
bacteria foraging algorithm based on operation sequences
to solve CFPs. Ameli and Arkat”' developed a pure linear
integer program to solve CFPs in consideration of alterna-
tive process routings and machine reliability. Mahdavi et
al. ' solved the CFPs and minimized the number of voids
and exceptional elements in a three dimensional machine-
part-worker incidence matrix.

However, with shorter product life cycles in the com-
petitive market, upcoming products are often ignored,
which imposes subsequent unplanned changes onto the
CMS of production disruptions and unexpected costs.
Hence, product life cycle changes should be incorporated
in the design of cells. This type of model is called the dy-
manufacturing  system ( DCMS ).
Tavakkoli-Moghaddam et al. ™ developed a genetic algo-
rithm (GA), simulated annealing ( SA) and tabu search
to solve CFPs under a dynamic condition. Ossama et al.
P! introduced a novel reconfiguration planning heuristic to
group the parts into families.

Bagheri and Bashiri''” developed a hybrid genetic and
imperialist competitive algorithm for CFPs with dynamic
uncertain demands and verified its efficiency by compa-
ring with GA. Kia et al. """ adopted a pure SA to simulta-
neously solve CFPs and CLPs in consideration of alterna-

namic cellular

tive routings and machine capacity. It is illuminating to
propose a multi-rows layout strategy by assuming that the
shape of cells is flexible, since such a strategy can in-
crease the diversity and practical significance of the lay-
out. However, as the feasible solution space of SA is eas-
ily influenced by its initial solution, the algorithm is of
slow convergence and easily trapped into a local opti-
mum. Izadinia et al. ""*' first applied CLPs in multi-floor
factory and developed a mixed integer programming ro-
bust model to solve the multi-floor layout problem. Mah-
I presented a new integrated mathematical
model considering cell formation and cell layout simulta-
neously. Wu et al. """ proposed a hierarchical genetic al-
gorithm ( HGA) to solve the integrated cell formation,

davi et al.

cell layout and group scheduling problems.
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Among the literature mentioned above, most studies,
however, have only addressed CFPs and CLPs in a dy-
namic environment sequentially or independently, despite
these two decisions being interrelated and impacting each
other. In fact, different cell formation solutions lead to
different optimal cell layout solutions. Dealing with CFPs
and CLPs sequentially or independently is unable to go
through every feasible solution in the solution space, but
solving CFPs and CLPs in an integrated way can over-
come this issue. In this paper, an integrated CFPs and
CLPs model is established in consideration of the varia-
tion of cell numbers and machine reliability. Subsequent-
ly, a dynamic multi-swarm particle swarm optimization
algorithm based on the communication learning strategy
(DMS-PSO-CLS) is proposed to solve the model.

1 Problem Definition and Formulation

Consider a dynamic cellular manufacturing system
which produces N kinds of products using M different
types of machines. Machines are located in a linear ar-
rangement within cells, while cells themselves are located
in some predetermined compulsory places in permutation
and combination. Each part type has a number of opera-
tions and is processed based on its operation sequence.
Each operation of a part type can be performed on differ-
ent machine types with different processing times. A suit-
able sequence of machines within cells helps to shorten
the total intracellular part movement distances and a prop-
er cell choice for a machine group assignment can reduce
the inter-cell movements.

The goal of this paper is to select machines for each
operation of parts and to assign shares of demands of
parts to the machines, which are arranged into locations
and cells. The objective function is to minimize the total
costs of intra-cell and inter-cell material handling, ma-
chine relocation, new machine purchase, machine over-
head, machine processing, cell formation and machine
breakdown.

The problem is formulated under the following assump-
tions:

1) The demand of each part type in each period is
known.

2) Each machine type has identical duplicates for satis-
fying capacity requirements, and some machines can be
purchased.

3) When a machine changes its location, the machine
transferring cost includes uninstallation cost and installa-
tion cost, which are numerically equal.

4) Machine reliability follows an exponential distribu-
tion with a known failure rate.

5) The shape of cells can be flexibly configured. All
machine types have the same dimensions and are placed
in the locations with the same dimensions. A multi-row
layout of facilities with equivalent areas is considered in

the CMS. The distance between any two locations is
known in advance.

6) The number of cells to be formed is variable with an
upper limit. And the maximum and minimum of the cell
size are predetermined.

2 Mathematical Model

2.1 Model parameters

p={1,2,..., P} is the index set of part types; k= {1,
2, ..., k[,} is the index set of operation indices for part
type p; m = {1,2, ..., M} is the index set of machine
types; ¢, ¢ ={1,2, ..., C} is the index set of cells; I, I’
={1,2, ..., L} is the index set of locations; and ¢ = {1,
is the de-

pt

2,...T} is the index set of time periods. D
mand for part type p in period t. T, denotes the capacity
of one unit of machine type m. A, and A, are the inter-
cell and intra-cell material handling cost per part type p
pert unit of distance. «,,f,. v, 6, and u, are the over-
head cost in each period, processing cost for each unit
time, purchasing cost, transferring and repair cost for
machine type m, respectively. h,,, is the processing time
of operation k on machine m per part p. d,, denotes the
is the
breakdown rate for machine m. B, and B, are the upper
bound and lower bounds of the cell size.

distance between location [ and location [I'. A

m

2.2 Decision variables

X,,m: denotes the number of part type p processed by

operation k on machine type m in location [ in period t.
W, .. =1 if one unit of machine type m is located in loca-

tion / and assigned to cell ¢ in period ¢, otherwise 0.
Y,

kpmlm'l't

means the number of part type p processed by op-
eration k on machine type m located in / and moved to the
machine type m' which is located in I’ in period 7. N, is
the number of machine type m purchased in period ¢.

2.3 Mathematical model

Material handling costs represent inter-cell and intra-
cell material handling costs. An inter-cell part trip oc-
curs, only when two consecutive operations of the same
part need to be processed in more than one cell. An intra-
cell part trip occurs when two consecutive operations of
one part are allocated to the same cell, but to different
machines. For different cell formation, the optimal layout
is different. The material handling cost equation is de-
scribed as follows:
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To adapt to the change of demand in different periods,
machines may have to be relocated for minimizing the
total costs which leads to the machine relocation cost.
The machine relocation cost equation is described as fol-
lows:

C +
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c=1

m

=1 [=1 m=1

As the capacity of each machine is limited, more ma-
chines may have to be purchased for meeting increased
demands of parts in the coming period. The machine pur-
chasing cost equation is described as follows:

T M
Cow = 2, 2 VuN,, (3)

t=1 m=1
Costs caused by consuming power and labor resource

should be counted in when the parts are processing. The
machine overhead cost equation is described as follows:

T M C L
merhedd = Z z «a, z Z Wmlct (4)

t=1 m= c=1 I=1

Machine processing cost increases with the increase of
processing time. The machine processing cost equation is
described as follows:

M L

process - 2 2 2 2 2 ﬁm kpm kpmlt (5)

t=1 p=1 k=1 m=

The cell formation cost equation is described as fol-
lows:

T

Co = 2 (6)

In many existing publications,
chines are reliable and can process parts without any
breakdown. However, this assumption is not realistic in
the modern manufacturing environment. In this paper,
machine reliability is assumed to follow an exponential
distribution with a known failure rate A. Therefore, the
machine reliability is » = exp( — A#) and the mean time

it is assumed that ma-

between failures is #, = 1,/ A. The machine breakdown
cost equation is described as follows:

4 MX e A
fﬂl]lllk._ z

P

K,
z 2 kpm[lt kpm mIL,Lm (7)

t=1 p=1 k=1 m= f,m
Therefore, the objective of the model is as follows:

min C=C
C

+ C + Cnew + C + Cploc.ess

+ Cfailure ( 8)

material relocation overhead

cell
The demand satisfaction constraint for all the part
equations is described as follows:

M

L
z Z XApmh =D pt
T

m=1

VpeP,VkeK, VteT (9)

The total capacity of machines is no less than the total

production time of parts.
described as follows:

Z z kaml/hkpm m Z Wmlrl

vaM Viel, VIET

The total capacity constraint is

(10)

The number of total locations is no less than the num-
ber of total machines. The constraint is described as fol-

lows:

M

)

m=1 c=

L
Y W,.<L VieT (11)
]

The number of machines assigned to cells meets the re-
quirement of the cell size. The constraint is described as
follows:

M L
BL z Z Wmlcl\BU

m=1

VeceC VteT (12)

Material flow conservation equations are described as
follows:

kpmlr - z 2 kpmlm'l't

VkEK VpEP VmeM VteT (13)
Apm/r: z Z,Y(A 1) pmlm' 't
Vker, VpeP,VmeM,VIeT (14)

The number of machine type m in the current period is
equal to the number of the same type in the previous peri-
od plus the number of new machines of the same type
purchased at the beginning of the current period. The de-
tailed equation is described as follows:

c L
2 z Wmlc(r+l) = 2 z mict
7

C VmeM,VteT (15)

3 Improved PSO Algorithm

King and Nakornchai'"' proved that solving the static

integrated CFPs and CLPs model is an NP-hard problem.
It should be noted that considering CFPs and CLPs in a
dynamic environment does increase the complexity of the
problem, and may consequently make the exact optimiza-
tion methods become very difficult and sometimes impos-
sible. Therefore, a novel DMS-PSO-CLS is proposed to
solve the dynamic CFPs and CLPs.

3.1 Hierarchical scheme for encoding

In this paper, the code consists of two sections in each
period.

The first section consists of P ingredients,
Fig. 1. The code of each ingredient represents the assign-
ment of operations and demand quantity of each part for
the utilized duplicates of each machine type. Suppose that
the operations of part type i can be processed by n,,

as shown in



412

Zhou Binghai and Lu Yubin

Ny, ..., N, types of machines respectively, and then the
K,

length of ingredient i is z n;. The components of this
j=1

section are all real numbers randomly generated from O to

n

1, and ) M, =1 VieP, ¥VjeK, should be guaran-

k=1
teed. When encoding the first section, we should consid-
er constraints (9) and (10).

M“ MIZ ... ilnl i i onz ikpi] ikpfz ikpinkpi
N J \ ) N J
YT N YT
The first operation for The second operation for The last operation for
product i product i product i

Fig.1 Code used to select machines for operations of parts and to distribute capacity of machines

Based on the first section, the number of each machine
type required to meet production capacity can be figured
out. The second section, as shown in Fig. 2, is related to
the assignment of machines to locations and to cells. It
consists of two pats. The lengths of both parts are equal
to the number of machines. All the components are also
real numbers generated from O to 1. When the code of the
Lyt
which are codes for machines in a descending order, and
based on the sort, corresponding machines are assigned to
locations in sequence. In the second part of the second

first layer is completed, we sort [,,, [, ..., [

Im> s

section, suppose that C cells can be chosen, and interval

C,
[0 1] will be averagely divided into C parts. If E‘ <C,

C +1
<— c machine i will be selected into cell C, + 1. Af-
ter finishing the second layer, the total number of ma-

M L

chines in each cell Z 2 w

mlct

can be calculated, and

m=1 ]

this part should be returned for encoding until constraint
(12) is satisfied.

I}
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The first machine type

The second machine type

The M-th machine type

Fig.2 Code used to arrange machine into locations and cells

3.2 Solution initialization

The diversified initial solutions are randomly generated
under corresponding constraints. The steps are described
as follows:

Step 1 Initialize parameters. Set N as the population
size and T as the total time period. Set n=1.

Step 2

Step 3  Generate the first ingredient code which consists
of real numbers randomly generated from O to 1 according to

ny

the proposed coding rules, and make sure that Z M, =1.

ijk
k=1

Initialize period ¢ =1.

Step 4 Compute the number of each machine type ac-
cording to the first code and finish the second part code.

StepS Ifr<T, sett=¢+1, and return to Step 3.
Otherwise, an initial solution is generated by merging the
T codes together based on its order.

Step6 If n<N, set n=n+1, and return to Step 2.
Otherwise, N initial solutions have been completed.

3.3 Communication learning strategy

Although dynamic multi-swarm particle swarm optimi-
zation ( DMS-PSO) can find the globally optimum solu-
tions of problems more efficiently compared with PSO,
there still remain some drawbacks. In DMS-PSO, as in-

formation among different sub-swarms cannot be ex-
changed until the population is regrouped, even after the
globally optimal region is found, the particles will not
converge rapidly to the globally optimal solution, leading
to a long search time. Aiming to address this drawback,
a communication learning strategy is integrated into the
DMS-PSO, which is used to exchange information among
different sub-swarms before the regrouping operation. In
this strategy, for each sub-swarm, each dimension of the
two worst particles learns from the better particle of two
randomly selected sum-swarms using the tournament se-
lection strategy. In the following parts, the steps of the
intact improved PSO algorithm are introduced.

Step 1 Initialize particle swarm parameters. Set T as
the total generation and H as the sub-generation in each
sub-swarm required to update.

Step 2 Divide all the particles into n sub-swarms. Set
h=1.

Step 3 Update the position and velocity of each parti-
cle according to its historical best location p,., and the
best location achieved so far from its group /.

Stepd If h< H, set h=h+1, and return Step 3.
Otherwise, update all the particle swarms by executing
Step 5 to Step 8.

Step 5 For each sub-swarm, we sort the fitness val-
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ues of the particles and select the two worst particles to be
updated.
Step 6
whole groups which include the sub-swarm where the par-
ticle to be updated stays.
Step 7
swarms’ [

Select two sub-swarms randomly out of the

Compare the fitness values of the two sub-
mes and select the better one.

Step 8 Use the winner’s /., as the exemplar to learn
from for the corresponding dimension of the particle to be
updated.

Step9 Ifr<0.97, sett=1+1, and return to Step 2.
Otherwise, update all the particles based on their histori-
cal best locations and the whole group’s optimum location
8oy DY regarding all the sub-swarms as a whole group,
then set =t + 1.

Step 10 If r<T, return Step 9, and set 7 =¢+1; oth-

best

sequence. Each operation can be processed on two alter-
native machines. The capacity of all machines is assumed
to be equal to 500 h per period. Intra and inter-cell mate-
rial handling costs per each part type are 5 and 50, re-
spectively. The distance between any two locations can
be found in Tab. 1.
and parts are depicted in Tab.2. The mean time between
two consecutive failures of these five machine types is
600, 400, 350, 350 and 400, respectively. The cost for
failure is 750, 800, 600, 750 and 850, respectively. The
proposed algorithm is coded in MATLAB R2012a and
solved using a PC with 2. 67 GHz Intel Core processor
and 2 GB of RAM.

Detailed information about machines

Tab.1 Distances between different locations

~
=
~
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i
~
£
~
~
g
Ly
£
~
&
I~
(=}

L, 0 1 2 1 2 3 2 3 4 3
erwise, end. L, 1 0 1 2 1 2 3 2 3 4
. . L 2 1 0 3 2 1 4 3 2 5
4 Experiments and Analysis ’
L, 1 2 3 0 1 2 1 2 3 2
To validate the model and evaluate the performance of Ls 2 1 2 1 0 1 2 1 2 3
the proposed improved PSO, a benchmark example from Ly 03 2 1 2 1 0 3 2 1 4
the literature is solved. The numerical example is taken Ly 2 3 4 1 2 3 0 1 2 1
from Ref. [11], which consists of four part types, five Ls 3 2 3 2 1 2 1 0 1 2
. . . L, 4 2 2 1 2 1
machine types and two periods. Each part type is as- ’ 3 3 0 3
. . Ly, 3 4 5 2 3 4 1 2 3 0
sumed to have three operations that must be processed in
Tab.2 Part-machine information
i P P P P
Machine 7 =5y B ! : : :
number 1 2 3 1 2 3 1 2 3 1 2 3
M, 500 900 18 000 1 800 9 0.76 0.65 0.39 0.46 0.49 0.83
M, 500 750 15000 1500 7 0.79 0.99 0.33 0.74
M, 500 900 18 000 1 800 5 0.73 0.93 0.44 0.57 0.45
M, 500 850 17 000 1 700 9 0.46 0.80 0.14
M; 500 650 13 000 1 300 8 0.54 0.65 0.48 0.67 0.62
200 700 300 0
& 500 250 700 300

4.1 Comparison with other algorithms

In this section, the SA proposed by Kia et al.!', the
standard PSO and the DMS-PSO-CLS proposed in this
paper are used to solve the numerical example mentioned
more than 100 times. The ranges of the optimum solu-
tions obtained by the three algorithms when the number of
cells is two are depicted in Fig. 3.

5.0r

WENE S
o

w
=
T

Total cost/10°yuan

DMS-PSO-CLS PSO SA
Fig.3 Ranges of optimum solutions for DMS-PSO-CLS, PSO
and SA

S
W
T

2.0

As seen from Fig. 3, the overall solution obtained by
the DMS-PSO-CLS is better than that of standard PSO.
Although sometimes the quality of the optimum solution
from SA is good enough, SA has a wide fluctuation.
This means that the stability of SA is worse than that of
the DMS-PSO-CLS. This can be explained by the fact
that, when the feasible solution space of the problem is
continuous, the update mode of SA cannot guarantee that
the SA can travel over its every feasible solution, neither
can the problem when it is discrete. Influenced by its ini-
tial solution, the neighbored solution generated according
to the update mode is limited, and only in some occasion-
al condition, the optimum solution obtained by the SA is
as good as that obtained by the DMS-PSO-CLS.

Fig. 4 shows that the time consumed by the DMS-PSO-
CLS for finding the optimum solution is less than that by
the PSO and SA. The communication learning strategy of
the DMS-PSO-CLS, which is an improved form of the
PSO, enhances the ability for searching for the global op-
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timum solution and accelerates its convergence speed.

N W R N
T

Computing time/s

DMS-PSO-CLS PSO SA

Algorithm category
Fig.4 Running times of DMS-PSO-CLS, PSO and SA

4.2 Influence of the number of cells

Under constraint (2), the maximum number of cells to
be formed is 5. In this part, the above three algorithms
are used to solve the numerical example 10 times under
different numbers of cells. The mean values of 10 opti-
mum solutions are shown in Fig. 5.

3.0r
2.8r
26
24r
22r
201
1.8r
e
Number of cells
Fig.5 Optimum cost for DMS-PSO-CLS, PSO and SA under
different numbers of cells

—*—=DMS-PSO-CLS
—a—SA
——PSO

Total cost/10°yuan

k=

It is shown that the three algorithms acquire the best so-
lution when the number of cells is 3. We may explain the
phenomenon with the fact that when the number of cells
is large, as the number of total machines is fixed, a cell
will have fewer machines, which will lead to more inter-
cell material handling cost when processing starts; and
when the number of cells is small, more machines are ar-
ranged to a cell, due to the limit of physical space, the
distance between machines increases, which will lead to
more intra-cell material handling cost. Hence, a balanced
number of cells will be employed for minimizing the total
cost.

4.3 Influence of machine breakdown

In order to analyze the influence of machine break-
down, the numerical example is solved under different
machine breakdown rates.

As seen from Fig. 6, with the decrease in the machine
breakdown rate, the cost for cell formation and layout de-
creases. However, when the mean time between two con-
secutive failures is less than 1 x 7, the total reduced cost

is not strictly equal to the reduced machine breakdown
cost. The results may be explained that when ¢, increases,
more machines can be selected when processing parts,
and the extra selection may increase the material handling
cost,
which leads to a reduction of the total cost as a whole.

but also decrease the machine breakdown cost,

2.40¢ — 102
B lotal cos
< 2.35¢+ Breakdown cost {0.20 §
2 230} )
?é o] H0.15 ¢
g 2.20f 10.10 %
g 215} %
= 210} 1% ;g
2.05

0
0.25r 0.50r 0.75r 1.00r 1.25r 1.50r 1.75r
Machine breakdown rate

Fig.6 Optimum cost for DMS-PSO-CLS under different ma-
chine breakdown rates

5 Conclusion

In order to solve dynamic CFPs and CLPs with consid-
eration of the number variation of cells and machine
breakdowns, a DMS-PSO-CLS was proposed. The results
of numerical examples demonstrate that the improved
PSO can find good solutions in a reasonable time, show-
ing good adaptation. Compared with other algorithms sol-
ving the same problem, the DMS-PSO-CLS consumes
less time and shows better stability. With the communica-
tion learning strategy, the improved algorithm can effec-
tively avoid stepping into the local optimum and slow
convergence trap. Therefore, the DMS-PSO-CLS is fea-
sible and effective. In the future, dynamic CFPs and
CLPs with uncertain demands should be further dis-

cussed.
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FE: A TR R A G B G AT & & AR, 3 &2 UM A L A B PR B #AT T R4, B A
BT FAMBER R P, F B RE N 5B KRTACANE G IRA], & H3b 5 2 AR EHA K.
RIG AR A IMB T A A BB, T THFANBEE. AR RETATAREIR%BNHE S
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