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Abstract: Aiming at the problem of the low accuracy of low
dynamic vehicle velocity under the environment of uneven
distribution of light intensity, an improved adaptive Kalman
filter method for the velocity error estimate by the fusion of
optical flow tracking and scale invariant feature transform
(SIFT) is proposed. The algorithm introduces a nonlinear
fuzzy membership function and the filter residual for the noise
covariance matrix in the adaptive adjustment process. In the
process of calculating the velocity of the vehicle, the tracking
and matching of the inter-frame displacement and the vehicle
velocity calculation are carried out by using the optical flow
tracing and the SIFT methods, respectively. Meanwhile, the
velocity difference between the outputs of these two methods is
used as the observation of the improved adaptive Kalman
filter. Finally, the velocity calculated by the optical flow
method is corrected by using the velocity error estimate of the
output of the modified adaptive Kalman filter. The results of
semi-physical experiments show that the maximum velocity
error of the fusion algorithm is decreased by 29% than that of
the optical flow method, and the computation time is reduced
by 80% compared with the SIFT method.
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raditionally, the task of computing speed is usually
T performed using imprecise wheel speed sensors and
inertial measurement units'"’ or expensive high accuracy
inertial measurement units™ . In recent years, it has be-
come an important requirement to obtain the speed of the
vehicle based on vision. In comparison with wheel odom-
etry, the visual method is not affected by wheel slippage
in slippery or uneven terrain or other abnormal condi-
tions, which can provide more accurate speed esti-

3 . . .
mates” . The visual method is useful for various reasons
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due to the fact that cameras are fairly small and inexpen-
sive, and they can obtain a greater data stream of the sur-
rounding environment, by which the speed of the robot or
vehicle can be accurately estimated' .

In a uniform light intensity distribution environment,
the visual method of obtaining velocity has high precision
and is an excellent complement to wheel odometry or oth-
er navigation systems such as the global positioning sys-
tem or inertial measurement units”'. In Ref. [6], the
BRISK and SURF feature point matching algorithms are
used to measure the vehicle speed, which can ensure the
robustness in the uneven distribution of light intensity,
but the real-time performance is poor. Kitt et al.'” pro-
posed a robust optical flow method for accurately estima-
ting the attitude of UAV, which is fast and the image mo-
tion estimation meets the requirements of high precision
and stability, nevertheless the accuracy of the motion ve-
locity estimated by this method is markedly influenced by
illumination.

In this paper, a new method is proposed to calculate
the velocity of a low dynamic vehicle, which is based on
the fusion of optical flow and feature matching under the
condition of uneven distribution of light intensity. By the
vehicle driving test in a non-uniform intensity environ-
ment,
shortcomings of the optical flow and the SIFT feature

the results show that this method overcomes the

matching methods while the estimation accuracy and real-
time performance are improved significantly.

1 Fusion Model

1.1 Image velocity estimation based on optical flow
computation

The Lucas-Kanade optical flow algorithm proposed by
Lucas et al. ™ has been widely used for optical flow esti-
mation, which is used to obtain the optical flow value by
assuming that the optical flow in the local neighborhood
of the pixel of interest is invariant and then solving the el-
ementary optical flow equation constructed by all the pix-
els around the neighborhood of the pixel of interest by the
least square method. Bouguet'' proposed a Lucas-Kanade
algorithm based on pyramid layering to cope with the
problem of using the Lucas-Kanade algorithm, which
means that the condition that the inter-frame displacement
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should be small enough must be satisfied. This algorithm
is summarized in the following.

For a point u(u,, u ) in the current frame image I, _,, a
point v(u, +d,, u, +d ) is found in the next frame image
I,, which has the most similar gray values to u(u,, u,)
and the vector d = [d,, d] represents the optical flow of
the pixel u.

We define the gray value difference between the two
consecutive frames as

8(d»A) = g(dx’ dy’ d d)”" d,")') =

xx? xy?

W

2 Z(Ik_](x +u,y+u) - L([x,y]A" +d +u)

X=-w, y=-w,

(D
1 + dx dxy . . .
where A = is the transformation matrix,
d, 1+d,
and d,, d,, d, and d are the affine deformation param-
eters.

This algorithm achieves the purpose of calculating the
optical flow by finding vector d and transformation matrix
A, so that the gray scale difference of the consecutive
frames is minimum.

This algorithm also needs to build an image pyramid by
down-sampling. First, the optical flow is calculated by the
top-level image in the image pyramid, and then the optical
flow is used to estimate the position of the corresponding
pixel in the next layer pyramid. These processes are re-
peated until the image pyramid of the bottom is calculated.
According to this method, the horizontal and vertical dis-
placements of the feature points of the consecutive frames
are tracked and matched. Subsequently, all the displace-
ment is accumulated and averaged to obtain the pixel dis-
placement [ s, SL}.]T between the consecutive frames.

The image pixel velocity [V, V] T can be calculated as

N

[ vl" =f[ ] (2)

sy
where f is the frequency of the camera.

1.2 Image velocity estimation based on SIFT matc-
hing

In this paper, SIFT'” is used to extract feature points
for matching, so as to estimate the speed between two ad-
jacent frames. First, the SIFT feature matching algorithm
is used to establish the scale space, and the representation
of an image in different scale space can be obtained by
convolving the original image [ with a set of variable-
scaled Gaussian G:

L(x,y,0) =G(x,y,0) *I(x,y) (3)

where L stands for the scale space and o denotes the scale
space factor.
In order to ensure that the extreme stable points are de-

tected in both the scale space and two-dimensional image
space, the DOG (difference-of-Gaussian) operator is ap-
plied to approximate the Laplacian-Gaussian operator.
Suppose that the approximate operator is D(x, y, o), after
processing the image, we have

D(x7ya0-) =L(x’y’k0-) _L(x»yao-) (4)

where k is the constant factor.

After approximating the Laplacian-Gaussian operator
by the DOG operator, extrema detection is required in
DOG scale space. The gray scale value of the point to be
detected is compared with 18 pixels at the corresponding
position of the front and rear images in the scale space, as
well as the surrounding ones of the point itself. Altogeth-
er, a single point requires 26 comparisons. When an ex-
tremum (maximum or minimum) is detected, it is kept
for further processing.

Local extrema detected in DOG scale-space are called
keypoints after the operations of improving positioning
accuracy and eliminating low-contrast points. To locate
the keypoints accurately, the principal curvature and key-
point orientation should be determined. The principal cur-
vature calculated by the Hessian matrix and a threshold is
used to remove the unstable edge response. The orienta-
tion is determined by the distribution characteristics of the
gradient magnitude of the keypoints. The gradient magni-
tude m(x,y) and orientation §(x, y) can be expressed as

m(x,y) =((L(x+1,y) —L(x-1,y))* +
(L(x,y+1) =L(x,y-1))*)"" (5)

L(x,y+1) - L(x,y-1)
Lix+1,y) —=L(x-1,y)

o(x, y) =tan"( ) (6)

An orientation histogram is formed from the gradient
orientations § of sample points in the region around the
keypoints, and the peak of the histogram as the main di-
rection of the keypoint while the information of the key
point is given and it is further descripted by generating the
eigenvector descriptor.

After the descriptor is generated, the Euclidean dis-
tance of the feature vector is used as the feature point
matching criterion, and the image velocity is calculated
by the successful matched feature points.

VSx SSx
L= ”
Vg, Ss,
where s, is the average horizontal displacement of feature
points, and s, is the vertical displacement.

1.3 The relationship between vehicle velocity and im-
age velocity

In our experiments, the camera is mounted on the front
of the vehicle and the optical axis is perpendicular to the
ground surface to achieve the vertical photography of the
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11-12 .
ground texture''™. The speed measurement model is

shown in Fig. 1. P(X,, Y,, Z,) is a point on the ground
which is projected onto the normalized image plane. Z, is
the distance from the camera projection center to the
ground, and R is the projection point of the optical center
of the camera on the ground.

Camera
]

(c,,c)

Optical axis

Ground

s R(0,0.Z,)
P(X.Y..Z)

R RR

Fig.1 Speed measurement model

The relationship between the projection point P’ (x
Y,»2,) and P(xg, Y, z;) can be expressed as

n?

X, X/ Z,
Yo | =1 Yo/ Z (8)
1 1

Taking the camera lens distortion effects into account,
P'(x,,y,,z,) is the actual image point and P"(x,, y,, z,)
is the ideal image point. The relationship of the distortion
correction is

X X, 2p,x,y, + (r2 +2xi)
[d]:(l+klr2)[ ]+[p1 2y D,
Ya Y pi(r +2y,) +2p,x,y,

where r= /x> +y’; k, is the coefficient of radial distor-
tion; p, and p, denote the coefficients of axial distortion.

In order to estimate the velocity of the vehicle, P"(x,,
Y4 Z,) 1s mapped to the point P”(x,, y,,z,) in the physi-

cal image coordinate system. The specific mapping rela-

tionship is
Lele WG
= +
Yo 0 a, [LYq Vo

where «, and «, are the focal distances expressed in units

(10)

of horizontal and vertical pixels; vy is the skewness coeffi-
cient; and (u,,v,) denotes the principal point coordinate
of the image plane.

In order to simplify the calculation, we assume that
there is no distortion effect in the camera lens, so k,, p,,
p, and y are 0. Eq. (10) can be rewritten as

(xp —Uy) Zy
Xy a,
[YR]: (yp_v())ZR (11)
o

y

Differentiating time in Eq. (11), the velocity of the ve-
hicle can be derived from the x and y axes of the world
coordinate system:

Zva ('xp - MO) VZ
[ V.v] o, o, (12)
V.| | Zgv, L w)V,
(63 63

¥y y

where v, and v, represent the pixel speed of the images. It
is assumed that the terrain surface is flat during the move-
ment of the vehicle, so V, =0 and Eq. (12) can be sim-
plified as

(13)

The vehicle velocity [ V., VL'V]T solved by the optical
flow method can be obtained from Eqs. (2) and (13),
and the velocity [ Vs, Vi, ] solved by feature matching
can be obtained by Eqgs. (7) and (13).

1.4 Fusion of optical flow and feature point matching

In this paper, an improved adaptive Kalman filter is
proposed to fuse the optical flow and the feature matching
to calculate the velocity of the vehicle so as to overcome
the problems of the low precision of the pyramid Lucas-
Kanade optical flow and time-consuming of the SIFT fea-
ture matching. Fig. 2 illustrates the fusion algorithm using
a block diagram.

Motion
—={estimation by
SIFT
Camera )
Motion
[—={estimation by
optical flow

Correction T

Fig.2 The structure diagram of the fusion algorithm

Velocity
acceleration

Kalman filter

The corrected
velocity output

In the case when the vehicle only moves forward, the
velocity in the traveling direction of the vehicle can be
expressed by V, and V. The acceleration difference V,
and the speed difference AV" are the state variables which
are solved by the improved adaptive Kalman filter. The
difference AV between V, and V, obtained by visual
measurement at each moment is regarded as a measure-
ment.

In general, the calculation speed of the optical flow is
faster than that of the SIFT in calculating the visual veloc-
ity information. In order to realize the synchronization of
speed, the displacement between two consecutive frames
is calculated and accumulated by the optical flow method.
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The average vehicle speed is obtained every 10 frames,
and the first and tenth frames are matched by using SIFT
to obtain another vehicle speed. Finally, the fusion of
these two speeds is carried out.

The state model and measurement model of the filter
are shown as follows:

X(k)y =@(k | k-1)X(k-1) +U(k-1)Aa + W(k-1)
(14)

Z(k) =H(k)X(k) + V(k) (15)

l _e—aT
1 - -
where @(k | k- 1) :{ a }; T is the sampling
0 e—uT

period; « is the reciprocal of the time constant of the ac-
celeration difference; Aa is taken as the estimated value
of the acceleration difference Aa( k \ k —1) at time k;

1_e—aT

Utk-1) =[7- l—e‘“T]T; H(k =[1 O]

V(k) stands for the noise of the measurement model.
The covariance matrix Q(k — 1) of the system noise is

4™ 3 12aT e +1-2¢"7

Ok 1) =200" 20’ 20’
—1) =2
7 e 41 -2e -
20’ 2a

(16)

The adaptive implementation of the algorithm is based
on the current acceleration difference Aa(k \ k) and the
filter residual error err( k) of the vehicle, which adjust the
variance o of the current acceleration difference, to ful-
fill the adaptive adjustment of Q(k —1). The variance o~
of the acceleration difference is given by

4 -7

[Aa —Aa(k | k)]’ Aa(k | k) =0

new-max

4 -

T[Aa —Aa(k | k)]? Aa(k | k) <0

new-min

(17)

where Aa are the maximum and the

new-max

and Aa,, ..
minimum value, which can be achieved after the adaptive
adjustment of the acceleration difference. And,
change with the change of Aa(k | k).

Aa _,, and Aa,, are the limit values of the acceleration

they

difference of the vehicle before adjustment, so the accel-
eration difference of the vehicle is within the interval
[Aa_,,, Aa,] and the two thresholds Aa, and Aa _, are
set such that Aa, > Aa,, and Aa_, <Aa

of Aa,., ... and Aa
fuzzy membership function of the exponential form.
Aa and Aa

new-max

then the value

—up?

are adjusted by the nonlinear

new-min

are obtained by

new-min

Aa,,=Aa(k | k) =0

) {1 _klAa(klk) (18)
0>Aa(k | k)=Aa_

- AaCklk)
1 -k, w

Aa
Aa

=MAa

new-max y

=MAa

new-min -y

Aa(k | k) ;0} (19)

Aa(k | k) <0

In order to further improve the estimation accuracy of
the filtering algorithm, the filter residual error err( k) is
introduced to adjust coefficients k, and k,. k, and k, can
be expressed as

1/Aa,,
| err(k) || ,=n

Aa, - Aa
_pller ey [ 2y = up
k, = {(1 gl )( Aa, )
k, || err( k) H F<n
(20)
e
kz = { ! —Aa_y F
k,, H err( k) H F<n
(21)
err(k) =Z(k) —H(K)X(k | k-1) (22)

where 7 is a positive number set according to human expe-
rience and only when | err(k) || r=n; k, and k, are adjus-
ted adaptively; k,,, k,, k, and k,, are constants. The val-

ue of k,, is in the interval [0, (1 - exp(ﬁ)
T~

-1/Aa,, 1/n

(LA%,) ) ]; the value space of k,, is

Aa,
1/Aa,,
]; the value of k,,

[CXP( Aay(jr —4) ) ( AayA_ajAaup)

is in the interval [O, (1 - eXP(m)
-1/Aa,, 1/n

) ]; and the range of k,, is

|

Finally, the modified adaptive Kalman filter is used to

-Aa_,-Aa,
)

(oo =z rm )| )

y

1/Aa,,

directly correct the vehicle velocity solved by the optical
flow, which can achieve higher precision vehicle speed.

2 Simulation Results

Our velocity measurement system consists of a vehicle,
a downward-looking camera, a PC, a DC motor and its
built-in encoder (see Fig.3). In the experiment, we con-

P— -

encoder

Vehicle

Fig.3 Velocity measurement system
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trol the vehicle running in the indoor light intensity distri-
bution uneven environment with a downward-looking
camera mounted on the front of the vehicle to acquire im-
age sequences of a carpeted floor surface at a frame rate
of 20 frame/s, and each frame image has a 320 x 240
pixels resolution. An encoder is provided on the wheel of
the vehicle to collect the vehicle velocity V;, and the ve-
locity information as a reference value is used to compare
the corrected velocity. The speed of the vehicle is about
15 cm/s.

We can see from Fig. 4 that the speed of the SIFT
measurement is less affected by the intensity of light than
that measured by the optical flow. In Fig.5, Ty and T
represent the time consumed by the optical flow and the
SIFT, which illustrates that the real-time performance of
the optical flow is better than that of the SIFT. As shown
in Fig. 6, after using the fusion algorithm of optical flow
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Fig.4 Comparison of the velocity measured by optical flow,
SIFT and encoder
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Fig.6 Velocity measured by the encoder and the optical flow
before and after the correction

and feature matching, the corrected vehicle velocity V, is
less affected by the light intensity and it tends to the true
value of the speed of the vehicle. Fig.7 presents that the
error curve e, of the corrected speed has a smaller fluctua-
tion than that previous correction and e tends to zero. In
brief, we can obtain a higher accuracy of the vehicle speed
based on the combination of optical flow and feature point
matching.
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Fig.7 Velocity error before and after correction

3 Conclusion

In this paper, we present an improved adaptive Kalman
filter to fuse the optical flow tracking method with the
SIFT feature matching to solve the problem of the low ac-
curacy of the low dynamic vehicle velocity calculation un-
der the non-uniform light intensity distribution. The exper-
imental results show that the fusion algorithm not only
highlights the real-time characteristics of optical flow and
the accuracy of SIFT feature matching, but also improves
the estimation accuracy and real-time performance of low
dynamic vehicle velocity under non-uniform light intensity
distribution. The algorithm is instructive to visually aid
navigation.
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