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Abstract: In order to study the variation of the asphalt
pavement water film thickness influenced by multi-factors, a
new method for predicting water film thickness was developed
by the combination of the artificial neural network (ANN) and
two-dimensional equations based on
included the rainfall

shallow  water

Multi-factors
intensity, pavement width, cross slope, longitudinal slope and
The
hydrodynamic method was validated by a natural rainfall
event. Based on the design scheme of Shen-Shan expressway
engineering project, the limited training data obtained by the
two-dimensional hydrodynamic simulation model was used to

predict water film thickness. Furthermore, the distribution of

hydrodynamic theory.

pavement roughness coefficient. two-dimensional

the water film thickness influenced by multi-factors on the
pavement was analyzed. The accuracy of the ANN model was
verified by the 18 sets of data with a precision of 0.991. The
simulation results indicate that the water film thickness
increases from the median strip to the edge of the pavement.
The water film thickness variation is obviously influenced by
rainfall intensity. Under the condition that the pavement width
is 20 m and the rainfall intensity is 30 mm/h, the water film
thickness is below 10 mm in the fast lane and 20 mm in the
lateral lane. Although there is fluctuation due to the amount of
training data, compared with the calculation on the basis of the
existing criterion and theory, the ANN model exhibits a better
performance for depicting the macroscopic distribution of the
asphalt pavement water film.
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n excess of water on the pavement leads to a lower
bearing capacity of the pavement structure and re-
duces pavement life. The existence of water on the pave-
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ment may cause hydroplaning because of splash and
spray. Little is known clearly so far if there is a well-de-
fined quantitative relationship between the factors and wa-
ter film variation. The reason is perhaps that the water
film variation is difficult to obtain with a high precise
based on the limit samples'". Most of the previous stud-
ies focused on the introduction of the theories or empirical
equations, and lacked consideration of pavement width.
Most of them simply studied the single hydrodynamic pa-
rameter, and the influence of multi-factors such as width,
slope, and rainfall intensity is still unclear™. Further-
more, traditional theoretical calculation cannot provide a
well depiction on pavement water film variation. There-
fore, a suitable prediction method for water film on the
asphalt pavement is essential.

Efficient numeric modeling is a beneficial tool for wa-
Bl Compared with one-dimensional
models, for pavement surface flow,
shallow water equations have the advantage on solving the
numerical instability and the backwater phenomenon
caused by irregular bottom and curbs'*™'. Tt is acceptable
to mathematically simulate a variety of free surface flows.
However, numerous simulation cases are required to ana-
lyze the water film variation. For this reason, the artifi-
cial neural network ( ANN) is a forecasting tool that can
handle the complicated issue efficiently. It does not rely
on the subjective factors from multivariate regression
analysis'® . The ANN model has been extensively applied
for solving highly nonlinear function approximations in the
fields of asphalt pavement, rigid pavement and composite

7-9 s
™. Fast and accurate prediction results can be
[10-11]

ter film simulation
two-dimensional

pavemen
achieved by the ANN model based on limited data

However, most previous studies focused on the pave-
ment water film calculation by empirical equations, and
limited work has described the prediction approach for
water film distribution on the pavement. In this paper, a
prediction model based on the ANN is proposed. The
training data obtained by the hydrodynamic method is
used to predict the water film thickness. Cases of the
pavement with different widths and rainfall intensities are
taken as examples to analyze the spatial variation of water
film thickness. Pavement submerge risk identification is
further explored. This approach is beneficial for predic-
ting pavement water film rapidly once the amount of
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training data is obtained, which is important for the pave-
ment driving safety.

1 Artificial Neural Network Model

Artificial neural network ( ANN) functions as a multi-
layer feed forward network depending on the error back-
propagation algorithm by training data. Unlike a model
which addresses the mapping interaction by a mathemati-
cal equation, the ANN model is a supervised learning
procedure that minimizes the sum of error between the de-
sired and predicted outputs by back-propagation. Mathe-
matically, the ANN model can be treated as a universal
approximation. The net structure, activation function, net
parameters ( weights, thresholds, learning speed and mo-
mentum coefficient) and learning error are essential for an
ANN model. The network consists of three layers: input
layer, hidden layer and output layer'”. The data is put
into the input layer and the hidden layer, and then the in-
formation is transmitted to the output layer on the basis of
activation function'”. The structure of the ANN model is
shown in Fig. 1.

Error back-propagation

Hiddeﬁ layer Output la.yer

lnpu.t layer

Fig.1 ANN model structure

Fig. 1 illustrates the structure of an ANN model, in
which x and y refer to the input and output; i and j repre-
sent the number of neurons in each hidden layer. Mathe-
matically, the ANN basically carries out the training

process by combining the input samples as''*’

y =f( 3 (Xw, +Xw, +..) +e) (1)

where y is the output result; X,, X,, ... represent the in-
put variables; w,, w,, ... represent the weighting value
of each input variable; and e is the bias.

The sigmoid function is widely used by a majority of
ANN models'"”, and it can be represented as

fx) :1174;(\ (2)
+ e

In order to eliminate the error caused by the order of
magnitude, the input and output data should be normal-
ized before the training process in the ANN model accord-
ing to Ref. [16].

The normalized equation is

(Yax = Yoi) (X; = X000)

Y. min Y .
' (Xmax - Xmin) ¥ " (3)

where Y, is the output data after normalization and train-
ing; Y, and Y,

max

of the training data after being normalized; X , and X

are the minimum and maximum values
max
are the minimum and maximum values of the training da-
ta before being normalized; X, is the input data before be-
ing normalized.

2 Acquisition of Training Data for ANN

To calibrate the simulation model for obtaining the
training data, pavement flow depth is monitored through
a remote road surface state sensor with infrared light de-
tection based on the practical project of the Shen-Shan ex-
pressway ( The pavement cross slope is 2% and longitudi-
nal slope is 0.464% ). An on-site monitoring program
was launched in the year of 2013 and lasted for more than
one year (see Fig.2).

0.464%  Vaisala DSC]ll/‘ﬁf 2%

Pavement

Fig.2 Monitoring device layout

To analyze the effects of multi-factors on pavement wa-
ter film thickness, a three-dimensional model is estab-
lished with the length of 100 m in the X direction, and
the width varying from 11 to 25 m (see Fig.3). The in-
fluence of pavement aggregate is not considered based on
two-dimensional shallow water equations. Simulation is
implemented by the following equations:

oh  9(uh) a(vh) _
ot ox ay =Qo 4
92,
ax
S, = 5
° 1 9z, ()
ay
S.gh=r, (6)
where
Ty ={U W+, Ty, =4V WV

Height/m

Fig.3 Three-dimensional model of pavement
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where h is the water depth on the pavement surface, m; ¢
is the time, s; u and v are the horizontal velocity compo-
nents in X and Y directions, m/s; Q is the rainfall inten-
sity, mm/h; z, is the bottom elevation, m; g is the ac-
celeration of gravity, m/ s%; nis the roughness coefficient
of the pavement; S, is the bottom slope; ¢ is the experi-
ence coefficient; 7, is the bottom shear stress, (kg - m)/
s’ S, is the bottom friction gradient.

Fig. 4 shows that the simulated value is in agreement
with the measured value under a natural rainfall event,
and the two curves are identical for the peak value. This
means that the two-dimensional shallow water equations
are accepted for simulating flow characteristics of the
pavement water film. However, many more cases need to
be done when the multi-factors are considered. For this
reason, the ANN model is proposed for predicting the
water film thickness rapidly and effectively once an
amount of training data is collected. This capability
makes it very powerful for precisely predicting the varia-
tion of the water film on the pavement surface.
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Fig.4 Simulated and measured curves of water film thickness
at the monitoring point

3 Water Film Prediction Model by ANN

Although the ANN model shows good performance in
many situations, Ji''"" showed that the ANN model cannot
precisely predict the water film thickness which exceeds
the range of training data. Therefore, obtaining represent-
ative typical training data as much as possible can im-
prove the prediction accuracy of the ANN model. In this
paper, the number of training data is 414 which is suffi-
ciently reliable for expressing the distribution characteris-
tics of the water film thickness. The water film prediction
model by the ANN includes one input layer of five neu-

rons, one hidden layer of fifteen neurons and one output
layer of one neuron. The input variables are the distance
from the median strip, rainfall intensity, cross slope,
longitudinal slope, and roughness coefficient. The output
variable is the water film thickness (see Tab. 1). The sig-
moid function is selected as the activation function. Refs.
[16 —17] illustrated that the number of neurons was from
6 to 15 based on the empirical formula. After the compar-
ison, the suitable neurons’ number in the hidden layer is
15 with the error of 0. 003 58 (see Fig.5) and the scatter
plot accuracy of 0.991 (see Fig.6). Then, 18 sets of da-
ta are randomly selected to verify the application of the
ANN model. The relative error of the predicted values are
all below 10% (see Tab.2), which demonstrates that the
predictive results have a good correlation with the simula-
tion data.

Tab.1 Training data

Factors Range
Distance from median strip/m 3.7t029.1
Rainfall intensity/(mm - h~') 25 to 187.68
Cross slope/ % 2t03
Longitudinal slope/% 0.3t02

Pavement roughness coefficient 0.013 to 0.015

Tab.2 The relative error of calibration data

Number Relative error/ % Number Relative error/%
1 2.67 10 0.64
2 5.87 11 7.42
3 0.42 12 7.08
4 0.88 13 5.35
5 0.92 14 1.13
6 4.40 15 1.82
7 1.03 16 0.72
8 1.40 17 8.98
9 9.71 18 2.36

8r
ok Training data

--------------- Expected error

©

[\
T

Error value/1073
~

1 1 1
0 0.5 1.0 1.5 2.0
Iterative times/10* steps

Fig.5 Error statistics of training data

4 Application of ANN Model

4.1 Water film simulation

The goal of this application is to predict the water film
thickness from the influence of multi-factors which are the

distance from median strip, rainfall intensity, cross
slope, longitudinal slope, and roughness coefficient'"™ .
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Fig. 6 Water film thickness comparison between simulation
and prediction

When the selected variable changes between its minimum
and its maximum value of initial data, other variables are
invariable. It is necessary to add a parameter to the fixed
variables’ in order to analyze the variables’ variation in an
accepted range'™. The variation of input variables are deter-
mined by

P =Pxa (9)

where P, is the input data; P is the average value of input
data; and a is the accepted range.

For the pavement with a width of 20 m, according to
the specifications for drainage design of highway (JTGT
D33—2012) "', the calculated value of water film thick-
ness is 11.21 mm under the conditions as shown in Tab.
3. From Fig.7, it is found that the trend of variations of
the prediction value on the pavement are different from
the calculation value. The thickness of the water film in-
creases clearly as the distance from the median strip in-
creases. The maximum value exceeds 20 mm. It can be
concluded that the two-dimensional characteristics on the
pavement surface cannot be explained clearly by the cal-
culation value. As schematically shown in Fig. 8, it can
be concluded that the area of lateral lanes (Y =14 to 17
m) has a larger water film thickness, which has a signifi-
cant impact on the driving vehicles.

Tab.3 Calculated value by the specifications for the drainage
design of highway

Factors Value
Rainfall intensity/(mm - h ) 30
Cross slope/ % 2
Longitudinal slope/% 1
Roughness coefficient 0.015
601
g o Prediction value
= - —- Calculation value
2 40F
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Fig.7 Water film distribution on cross-section

Fig.8 Water film distribution on pavement surface

4.2 Effect of rainfall intensity

Rainfall is a crucial factor for water film variation. As
is shown in Tab. 4, compared to the minimum value of
water film thickness, the maximum value of water film
thickness of the pavement is obviously influenced by rain-
fall intensity due to the flow confluence on the pavement.
In particular, Fig.9 shows that when the rainfall intensity
is 100 mm/h, the water film thickness is greater than 50
mm in the location of 14 to 20 m away from the median
strip. So, the lateral lane may suffer a worse situation in
a strong rain intensity. On the other hand, the prediction
value curve shows a fluctuation under the condition of va-
rious rainfall intensities. The fluctuation becomes more
obvious as the rainfall intensity becomes stronger. It can
be seen from Fig. 9 that the pavement water film thickness
has an abnormal fluctuation on the location of 8 to 10 m
from the median strip because the small thickness is influ-
enced by multi-factors more easily, and this also illus-
trates that the ANN model has not achieved enough accu-
racy for small local water depths.

Tab.4 Water film thickness value influenced by rainfall inten-
sity

Rainfall intensity/(mm - h™') ~ Water film thickness/mm

30 4.03 to 21.66
60 7.51 to 25.69
80 4.64 t0 41.99
100 4.64 t0 52.93
60_Rainfall intensity/(mm * h™):
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Fig. 9 Water film thickness distribution influenced by rainfall
intensity

4.3 Risk identification

Having investigated the impact of water film thickness
distribution by the ANN model, we subsequently studied



494

Ma Yaolu, Geng Yanfen, Chen Xianhua, and Lu Yankun

the risk of hydroplaning depending on water film thick-
ness, and this is beneficial to driving safety under bad
weather conditions. The pavement area can be classified
into a high risk area, medium risk area and low risk area.
Fig. 10 shows the pavement risk identification by a varia-
tion width from 11 to 25 m. Low risk means that the
pavement water film thickness is 30% lower than that of
the maximum value; high risk means that a pavement wa-
ter film thickness is 70% higher than that of the maxi-

mum value; and others are medium risk. The high risk
area exceeds half of the pavement surface when the width
of the pavement increases to 25 m. It can definitely be
seen that high risk area gradually expands with the in-
crease in the width. This is because more discharge is ac-
cumulated easily by a wider pavement. As a result, a wi-
der pavement requires efficient drainage facilities to
eliminate the adverse influence caused by the water film.

N Y A
TR = 9=
s s
3
10 10 20 30 40 50 0 10 20 30 40 50
Pavement length/m Pavement length/m
(2) (b)
Sl oo S S
5H 5
0 1020 30 40 50 0 10 20 30 40 50
Pavement length/m Pavement length/m
(¢) (d)
BNLowrisk; [IMediumrisk;  EHHigh risk

Fig. 10 Risk identification under different pavement widths. (a) 11 m; (b) 15 m; (c) 20 m; (d) 25 m

5 Conclusion

In this study, the distribution of the asphalt pavement
water film is systematically predicted by an ANN model.
The artificial neural network is an alternative approach for
revealing the influence of multi-factors for pavement wa-
ter film thickness. The approach is capable of predicting
the water film distribution on asphalt pavement by using
limited data. It is valuable for the design of expressway
geometry and drainage. Based on this method, an opera-
tional forecasting circumstance can be achieved when
using a trained ANN network, which means that the ANN
model can depict the distribution of water film thickness
on the asphalt pavement. Future work will focus on de-
veloping and increasing the capability of this methodology
by comprising the geometric line type design of the pave-
ment. Expanding the model to a superelevation transition
section and transition curve will allow it to be applied
more widely in pavement engineering.
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