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Abstract: The problem of analytically pricing the discrete
monitored European barrier options is studied under the
assumption of the Black-Scholes market. First, using variable
transformation, the mean vector and covariance matrix of
multi-dimensional marginal distribution are given. Secondly,
the analytical pricing formulas of the discrete monitored up-
knock-out European call option and the discrete monitored
down-knock-out European put option are obtained by using the
conditional probability and the characteristics of the multi-
dimensional normal distribution. Finally, the effects of the
discrete monitoring barriers on the prices of the barrier options
are discussed and analyzed. The research results state that the
price of the discrete monitored up-knock-out European call
option increases with the increase in the up barrier, and the
price of the discrete monitored down-knock-out European put
option decreases with the increase in the down barrier.
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ne of the most important issues in pricing barrier
O options is whether or not the barrier is monitored at
continuous time. Continuous monitoring of the barrier is
assumed in most models. Pricing for continuous monito-
ring of barrier options is a key issue in financial engineer-
ing. Merton'" gave the formula for pricing the continuous
monitoring barrier option under the classical Brownian
motion. Chen et al. "*'studied the pricing of a two-barrier
option when the underlying price was considered a sub-
transmission system. In this case, the option price is
modified by the Black-Scholes formula with a time-frac-
tion derivative of the constraint. Appolloni et al. " ar-
gued that the binomial lattice method based on interpola-
tion techniques can be used to price one-step two-barrier
options. Boyarchenko et al. " proved the advantages of
the conformal deformation in the integration of the pricing
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formula in the context of a wide class of Lie-dimensional
models and the effective conformal deformation of the
Heston model and constructed contours. Chandra et al. "
proposed a method for calculating the value of a class of
Levy processes under the incomplete market. Thakoor et
al. ' proposed a fourth-order numerical method for the
continuous discrete-time monitoring of barriers and dem-
onstrated their technology’s superiority over existing
Black-Scholes models and constant elasticity diffusion.
Fajardo'” proposed a new pricing formula for some under-
lying barrier-type contracts when the underlying process is
driven by a type of important Levy method, which in-
cludes the CGMY model, the generalized hyperbolic
model and the Meixner model. Cassagnes et al. '™ used
the path integral approach to frame the outer barrier to the
Asian option pricing problem as the Wiener functional in-
tegral form. Zhang et al." proposed the least squares
Monte Carlo (LSMC) method to estimate the American
barrier option, which modified the LSMC method.
Dokuchaev''”’ suggested that the applicable market-time
model can be applied, where the market dynamics are de-
scribed by stochastic differential equations with stochastic
coefficients in the European barrier option pricing and

11 .
! obtained an accurate for-

hedging theorem. Dai et al. '
mula for assessing dividends for continuous monitoring of
barrier options. Escobar et al. ' relied on the context-de-
pendent perturbation theory of two-dimensional asset
models with stochastic correlation structures to derive de-
rivatives from two asset paths. Jun and Ku'" studied two
barriers to which the barriers alternated with the activity
of the US barrier option valuation analysis. These options
are used in analytical pricing formulas where constant and
exponential barriers are the best early functional exercise
policies.

However, in practice, most of the bargain options tra-
ded in the market are discretely monitored.
words, they monitor the barrier at a fixed time( usually a
daily shutdown). In addition to the practical implementa-
tion issues, there are some legal and financial reasons
why the option of monitoring the barrier with the discrete
monitoring option is preferable to continuous monitoring.
Some traders in the discussion of the “Derivatives Week-
ly” on May 29, 1995 announced that since the continuous
monitoring barriers can exist in less liquid markets, while
the rest of the western markets are restrained by excess

In other

barrier damage, this may lead to some arbitrary opportu-
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nities''.
popular, it is important that their pricing is more difficult
than their sequential counterparts. The most important is
the monitoring frequency of the barrier, that is, the fre-
quency of the observed event. With separate monitoring
barriers, they check for a fixed time (e. g. weekly or
monthly) triggering. The result is a knock-out ( knock-
in) option with an increased number of discrete monito-
ring barriers becoming less (more) expensive to monitor.
Aitsahlia et al. "' is the first person to study the problem
of pricing discrete monitoring barrier options. Broadie et
al. ""used the continuous barrier formula to quite accu-
rately set a pricing barrier option with a simple continuity
U7 proposed a classical
Brownian separation for the barrier option based on the
numerical integration method. Duan et al. "® proposed a
new Markov chain technique for pricing all of these prob-
obstructing options. Ahmadian et
al. """ developed a numerical method for pricing the vari-
ance model with elastic-invariant and jump-diffusion
(CEVJD) underlying the description of discrete barrier

While discrete monitoring barrier options are

correction barrier.  Sullivan

lems at any time,

options. Li and Linetsky'™” developed a feature-based ap-
proach to solve the discrete-time first-pass detection prob-
lem by a rich class of Markov processes, including diffu-
of which transitions or Ferman-Katz
in L2-
studied the method for pricing

sion and jumps,
semigroups possess eigenfunction expansions
space. Farnoosh et al. ™"
the discrete time-dependent parameters with dual barrier
options in the Black-Scholes framework. Rostan et
al. "™ applied the original variance reduction technique
to monitor the European double barrier option pricing in
discrete time. Umezawa et al. > proposed a discrete mo-
nitoring path-dependent derivative pricing method when
the underlying asset price is time-driven by the Levy
process. Using the derived feature representation, they
obtained the semi-analytical pricing formula for geometric
Asian, forward-start, attenuator and look back options. E-
ven though discretely monitored barrier options are popular
and important, pricing them is more difficult than that of
their continuous counterparts. The existing literature on the
pricing of the option with discretely monitoring barriers is
focused on the numerical method. This paper studies the
analytical method of pricing option with discretely monito-
ring barriers.

1 Market Model

Assume that the market is a Black-Scholes market'™’,
and the motion of free risky asset is as follows:

dB,=B,rdt B, =1 (1)

where r >0 is a constant free risk interest rate. The price
of risk asset (stock) is depicted by a stochastic difference
equation ( geometric Brownian motion) under the risk-
neutral measure

ds, =S,(rdt +odW,) S, >0 (2)

where o >0 is the constant volatility of the risk asset; W,
is the standard Wiener process. Let 0 <s <¢, and we have

EIW W] =s (3)

According to the ITO formula, the price of risk asset at
the time point ¢ is obtained by

(r-o/2)t+oW,
S =S.e
' 0

(4)

where W, = N(O, o't); d(xsm, ), V(x;;m, Y) are the
probability density function ( PDF) and the cumulative
distribution function (CDF) of a multi-dimension Gaussi-
an distribution with mean vector g and covariable matrix
XY, respectively; and ¢( -+ ), W( - ) are the probability
density function ( PDF) and the cumulative distribution
function (CDF) of a standard Gaussian distribution, re-
spectively.

For the European barrier options, the barriers are divid-
ed into the up barriers and the down barriers on the basis
of the relationship between the barriers and the initial
price of risk asset or on the basis of the behaviors that the
price of risk asset passes through the barriers. Since the
barrier options are activated or extinguished while the
price of risk asset crosses the barriers, the barrier options
can be classified as the knocked-in barrier options and the
knocked-out barrier options. The European barrier option
can also be divided into call barrier options and put barri-
er options on the basis of the payment function at the ma-
ture time. With different combinations, there are eight-
type barrier options with a single barrier. Since there is
some relationship among those of the eight-type barrier
options, we just consider the up-knocked-out European
call options and the down-knocked-out European put op-
tions, in which these two type barrier options are the
most important barrier options. T is the mature time of
the barrier option, in the time interval (0,7), 0 <t, <1,
< e & l‘”_]
points, where the barriers are B,=0, i=1,2,---,n - 1.

< t, =T are the discrete monitoring time

Without loss of generality, let ¢, =ir, i =1,2, -, n,
where 7 =7/n, and for the pithiness of the symbols, de-
note S, =S,. With the strike price K (>0), the price of
the discrete monitored barrier up-knocked-out European
call option can be described as

C=c[ (S-K)dpro(S, <B,.S, <B, .S<S$)
p 1 1 2 2 n
K

(5)

The price of discrete monitored barrier down-knocked-
out European put option can be described as

K
P=e¢e"| (K-S)dpro(S, =B,,5,=B,,,S5<S)
p 1 1 2 2 n

0
(6)
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2 Pricing Discrete Monitored Barrier Options

2.1 Prices of the discrete monitored up-knock-out

European call options

Let

W:ln(s,) ~1In(S,) —(r—%z)l'T

i o ﬁ

According to the characteristic of the Wiener process,

we have W, =N(0,i), and E[ W, W,] =i,i<j. Fur-

thermore, the distribution W, , W, ,---, W, is a multivari-
ate normal distribution, and its covariance matrix is

1 J 1 1
1 2 - 2 2
=] : : : (7)
1 2 n-1 n-1
1 2 n-1 n
Denote
1 .- 1
z[ s ]
1 - n-1
and
221:232:[1 2 n-1]
and then, we have
2 -1 0 - 0 0 0
| -1 2 -1 0 0 0
0 0 0 -1 2 -1
0 O 0 0 _1 1 nxn
(8)
2 -1 0 0 0 0
-1 2 -1 0 0 0
3= : : :
0 0 0 -1 2 -1
0 0 0 0 -1 L ixinn
(9)
Let
0_2
) ln(B,.)—ln(SO)—(r—z)iT
B, = i=1,2,---,n-1
o7
(10)

In(S,) —In(S,) - (r-"—)T
o

B =

n

Accordingly, we have

pro(S,<B,,S,<B,,---,S<S,) =

pro( WlSEI,WZSEZ,“',W,,SE")(Il)

where pro( VNVl , VNVZ,---, ﬁ/") +N(0,3), and the 3’ co-
variance matrix is presented by Eq. (7). On the basis of

the multivariate normal distribution, we have pro ( VNV” <

En ‘ ngél’“"ﬁ/n—lggnfl)’ and

ﬂ=0+22121]1(El,gz,“',énq) = Eu—l (12)

a'2:"—2212‘171]2; =n-1 (13)
Since pI‘O( WI SEI’“"Wn—] sén—]) i_N(O’Z]])a
we have
prO(W|$§],~2S§2, ”Wnsén):
pro(W,<B,|W,<B, W,<B,,~W, <B, ) x
pro(VV1$EI,W2$E2, “Wn—l$§n71)_
W(B,:p.a)W((B,, B, B, )03, (14)
Let
k_ln(K) —-In(S,) - (r-o°/2)T
oiT
On the basis of Egs. (5) and (14), we have
C = lp((El’l}z"",gnq);oyzn)
e"TJE (Sue(r—uz/Z)Tﬂr/;B _ K)dW(B;,&,,B'Z)
(15)

Clearly , we have
| Kaw(Bip,5') = Kw(B,, - &) (16)
K

And then, we have

J'k S0e<r—u9/2)7‘+aﬁgddj< B:/-;’ag) _

Soe(rf(rl/Z)T+B”,,(r‘/17+(rlf/2¢f( E + a_’\/; _ 1’2)
(17)

According to Egs. (16) and (17),we can obtain the
price of the discrete monitored up-knock-out European
call option

n-1

C=1[,((El’éza'“9§1171);09211)
e—rT[Soe(V—UI/Z)T+I§,,,‘U/;+J:T/2W.< En—l Yot - I~() _

K¥(B, -K)] (18)

2.2 Prices of the discrete monitored down-knock-out

European put options

For the down-knocked-out barrier options, on the basis
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of the symmetries of the Wiener process and the normal
distribution, we have

prO(WIS—EI,WzS—Ez, “’anls_gnfl’wnsgn) =
prO(Wn$§n ~1$—E1,W2$—§2, ’Wn71$_§nfl) :
pro(Wls —EI,W2$ _EZ?”"Wn—ls - Nn—l

(19)

VNVl , I7V2 ,*++, W, _are depicted by a multivariate normal
distribution, and its covariance matrix is still presented by
Eq. (7), so we have

W1$—B],W2$

pro(W,<B,
~-B,,,W,,<-B, ) +N(u,d")

n-17"= n-1

where

ﬁ=0+2212111( _Ela_gz,“',_éml) =-B

(20)
o’ =n _22121_1|2le =1 (21)

The price of the discrete monitored down-knock-out
European put option can be presented by

P = l[/(k(— El’ - Ez,"', - En—l);o’zll) :
e_rTJK (K _ Soe(r-az/zﬂmﬁB)dlp(B;ﬁ’a_z) (22)

Since
< - -
j KdW(Biu,0°) = KW(K; - B, ,1) =

KW( K + En_l)

and

K .
r=o’. +o/71 B
[ st aw(s; - B, 1) =

Soe(rﬂﬁ/z)'r ezr/;B—(B+B”,,)3/2 dB =

S |
=
Soe(.-qﬁ/z)na"r/zfé,, ,uﬁjk Le*w*guf”ﬁf/zd]; =

= /2w
B S T

The analytical formula for pricing the discrete moni-
tored down-knock-out European put option can be ob-
tained as
P=9(( _El ’ _Ezv'"v _En—l)@;n)e_ﬂ(lﬂp(k +Eu—]) -

Syelr bl g(R LB —aiT)) (23)

3 Sensitive Analysis of Barriers

According to Eq. (10), for Yi=1,2,:--,n, we have

1N3’i~>+oo

(24)

Bi—>—oo

if B~ +
if B,—0 }

For the discrete monitored up-knock-out European call
option, if all the barriers at the discrete monitoring time
points are tend to be + o , which are equal to the fact
that the up barriers disappear, the discrete monitored up-
knock-out European call option degenerates into an ordi-
nary European call option. In Eq. (18),

11,(( +w’“.9+°°);0’211)=1

and while B, ,— + « ,

efrT[ Soe(rfai/z>T+E,,,‘oﬁ+,ﬁ/zlP( Enil gy [’%) —K‘I/( E,,,l _ [’%)] —

2 2
n i)—(r+(%)T ln(S—O)—(r—%)T
K _e Ty K

inf
S — o T

The pricing formula ( 18 ) degenerates to the Black-
Scholes formula for pricing European call options. Ac-
cording to the nature of normal distribution, the price of
the discrete monitored up-knock-out European call option
increases with the increase in the up barrier B,,i =1,2,
---,n—1. The price of the discrete monitored up-knock-
out European call option decreases with the decrease in
the up barrier B,,i=1,2,---,n - 1.

For the discrete monitored down-knock-out European
put option, if all the barriers at the discrete monitoring
time points tend to be zeros, which are equal to the fact
that the down barriers disappear, the discrete monitored
down-knock-out European put option degenerates into an
ordinary European put option. In fact, in Eq. (23), we
have

W((-B,,,-B)0,3,) =W (+%,,+0):0,3,) =1

Furthermore, while B, ,— — o« , we have

efrT(Kll,( K + En ]) _Soe(rﬂf/z)rm%/uE,,,,n/?) .

w(K + E,,_l —oir) =

The pricing formula (23) degenerates into the Black-
Scholes formula for pricing European put options. Ac-
cording to the nature of Gaussian distribution, the price of
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the discrete monitored down-knock-out European put op-
tion decreases with the increase in the down barrier B,, i
=1,2,+-,n — 1. The price of the discrete monitored
down-knock-out European put option increases with the
decrease in the down barrier B,, i =1,2,--- ,n—1.

4 Conclusion

The problem of analytically pricing the discrete moni-
tored European barrier options is studied under the as-
sumption of the Black-Scholes market in this paper. By
making use of variable transformation, the mean vector
and covariance matrix of the multivariate normal distribu-
tion, which can be used to price the discrete monitored
barrier options, are obtained according to the Wiener
process. For the discrete monitored up-knock-out Europe-
an call option and the discrete monitored down-knock-out
European put option, we study their pricing problems,
and we obtain the analytical pricing formula. The effects
of the discrete monitoring barriers on the prices of the
barrier options are discussed and analyzed. The results of
this research state that the discrete monitored down-
knock-out European put option degenerates into the Euro-
pean call option, and the price of the discrete monitored
up-knock-out European call option increases with the in-
crease in the up barrier, and the price of the discrete mo-
nitored up-knock-out European call option decreases with
the decrease in the up barrier; the discrete monitored
down-knock-out European put option degenerates to the
European call option, but the relationship between the
barrier and the price of barrier option contradicts this.
The analytical pricing formula given in this paper can be
used to quickly and real-time estimate the barrier option
price on the market. Compared with the existing numeri-
cal methods, it has characteristics of simplicity and rapid-
ity.

The method pricing the discrete monitored barrier Euro-
pean options can be easily expanded to the pricing any
discrete monitored barrier options with the single barrier.
We will consider the discrete monitored double barrier op-
tions and the discrete monitored barrier American-style
options.
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