Journal of Southeast University (English Edition)

Vol.34, No. 1, pp.6 — 14

Mar.2018 ISSN 1003—7985

Parameter identification of the fractional-order systems
based on a modified PSO algorithm

Liu Lu' Shan Liang' Jiang Chao’

Dai Yuewei'

Liu Chenglin’® Qi Zhidong'

(' School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)
(*Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA)

(*Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, China)

Abstract: In order to better identify the parameters of the
fractional-order system, a
optimization (MPSO) algorithm based on an improved Tent

mapping is proposed. The MPSO algorithm is validated with

modified particle swarm

eight classical test functions, and compared with the POS
algorithm with adaptive time varying accelerators ( ACPSO),
the genetic algorithm (GA), and the improved PSO algorithm
with passive congregation (IPSO). Based on the systems with
known model structures and unknown model structures, the
proposed algorithm is adopted to identify two typical
fractional-order models. The results of parameter identification
show that the application of average value of position
information is beneficial to making full use of the information
exchange among individuals and speeds up the global
searching speed. By introducing the uniformity and ergodicity
of Tent mapping, the MPSO avoids the extreme value of
position information, so as not to fall into the local optimal
value. In brief, the MPSO algorithm is an effective and useful
method with a fast convergence rate and high accuracy.
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F ractional calculus and integral calculus were pro-
posed 300 years ago. With the development of com-
puter technology, the fractional calculus theory has drawn

1-2]

increasing attention' This is because we have found

that some systems, such as economic systemsm, biolo-
141 (51 : t6l

gy ', thermal systems ', electric power systems  , can

be described in detail by fractional differential equations.

The fractional-order model is widely used in all types
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of fields due to its lower order, fewer parameters and
higher modelling accuracy. At present, the research of
the fractional-order system identification is still in the ini-
tial stage, and there is no uniform identification method.
Since the physical meaning of fractional calculus is still
not certain, many identification methods for the fraction-
al-order system do not take into account the structural pa-
rameters of the model. Therefore, many experts have fo-
cused on the study of the identification of fractional-order
structure parameters'” " .

Recently, considerable attention has been paid to evolu-
tionary algorithms, such as differential evolution (DE)"’,
the genetic algorithm (GA)"” and particle swarm optimi-
zation (PSO)"". Especially, compared with other evolu-
tionary methods, PSO has the advantages of high speed,
high efficiency and is easy to understand. A number of i-
dentification results show that the PSO algorithm is effec-
tive in the fractional-order system identification!”""'.

However, the classical PSO can easily fall into a local
optimum, especially in a complex and high dimensional
situation. In order to improve the performance of the tra-
ditional PSO, various PSO variants were proposed. One
of the PSO variants proposed by Shi and Eberhart intro-
duced the concept of inertia weight'" .
weight is added to balance the global optimization and
Some PSO variants try to
improve the convergence performance of the algorithm
by adding the characteristics of other methods'” .

The inertia

local optimization abilities.

Aghababa'”' proposed a new PSO with adaptive time va-
rying accelerators ( ACPSO). However, these improve-
ments did not change the three components of the tradi-
tional PSO algorithm. Therefore, the information trans-
mission among individuals cannot be carried out, which
ignores some useful information. Considering the integ-
rity of group information, He et al. ""®" proposed an im-
proved PSO with passive congregation (IPSO). This al-
gorithm only considers the information of a single indi-
vidual and does not make full use of the information of
the group. In this paper, a modified PSO algorithm
(MPSO) is presented. This method can not only enable
the individuals to obtain the information of the global
best individual,
change among individuals.

but also achieve the information ex-
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1 Theory

1.1 Definition of fractional-order derivatives and
integrals

The development of fractional calculus has gone
through a long process, which can be regarded as the
generalization of integral calculus. The basic operational
factor of fractional calculus is ,d;, where a and ¢ are the
upper and lower bounds of the operational factor, respec-
tively. « is the order of calculus, and its value can be any
complex number. The difference of calculus operator de-

pends on the value of «, as shown below.

j; Re(a) >0
=11 Re(a) =0 (1
j' (dr) Re(a) <0

where Re(«) is the real part of a.

So far, fractional calculus has no uniform definition.
In the development of fractional calculus, there are sever-
al definitions of fractional calculus. Three most common-
ly used definitions are Caputo, Riemann-Liouville (RL)
and Grumwald-Letnikov (GL)"'. For example, the def-
inition of GL is defined as

(t-a)/h

A =l 3w = i) (2)
@ __ (=D'T(a+1)
TG+ DT(a-j+1)

where I'( -+ ) is the Gamma function; [ (t —a)/h] is the
largest integer that is not greater than (¢ —a)/h, and A is
the sampling period.

(3)

1.2 Fractional-order systems

Conventionally, integer-order calculus is used to de-
scribe natural phenomena, but many phenomena in nature
cannot be accurately described by the traditional integer-
order differential equations. Therefore, it is necessary to
extend the traditional calculus to describe such phenome-
na. Fractional differential equation is an extension of tra-
ditional calculus, which can describe complex physical
systems more accurately.

The general expression of the SISO linear fractional-or-
der system differential equation is shown below.

a,D*y(t) +a, D y(1) + - +a,y(1) =
b, D*u(t) +b, D’ 'u(t) +-- +b,u(t) (4)
where a, and b, are real numbers; «, and B, are calculus
orders; u(t) and y(t) are the input and output signals of

the system, respectively. Under a zero initial condition,
the expression of the transfer function is described as

CY(s) bt b, by

G(s) (5)

U(s) as™+a, s+ +a,

At present, it is difficult to identify the general frac-
tional-order system, because it is difficult to determine
the order of the system. In Ref. [20], the concept of
continuous order distribution was proposed, and the gen-
eral expression of the fractional-order system was trans-
formed into an expression with common factor order,
which is shown below.

a,D"y(t) +an_lD(”'”°‘y(t) o +ayy(e) =
b,D"u(t) +b, D" Pu(t) +- +bu(t) (6)

The corresponding transfer function is

mg (m-1)p
_Y(s) b,s"+Db, s + -+ b,

S U(s) a5 +a, s"V 4+ ta,

G(s) (7)

1.3 PSO variants

1.3.1 ACPSO algorithm

PSO is a new evolutionary algorithm, which seeks for
the optimal solution by sharing information among indi-
viduals. In the process of optimization, each particle up-

dates its velocity and position as follows'"’

v, (t+1) =w (1) +o,r (P(1) =x,(1)) +¢,1,(G(1) —x,(1))
(8)
x,(t+1) =x,(t) +v,(t+1) (9)

where w is the inertia weight; v, () is the velocity of par-
ticle i at iteration ¢; ¢, and ¢, are two positive constants be-
tween O and 1; r, and r, are two random numbers between
0 and 1; P,(¢) is the optimum value of particle i at itera-
tion #;x,(¢) is the current position of particle i at iteration
t; G(t) is the optimum value of the particle population.

In Ref. [14], a linearly decreasing inertia weight strat-
egy was introduced in conventional PSO. The modified
inertia weight w is shown below.

W) =, -y (10)
The corresponding velocity updating formula is
vi(e+1) =w()v, (1) +¢,r (Pi(1) —x,(1)) +
e, (G(1) —x,(1)) (11)

where w

max

is the maximum value of inertia weight w;
W, 18 the minimum value of inertia weight w; T is the
maximum number of iterations.
weight w is set from 0.9 to 0.47".
In Ref. [17], in order to improve the convergence rate
of PSO, the ACPSO is proposed, which is expressed as

f(Pi(t) _'xi(t))
J(P (1))

J(G(1) -x,(1))

Coi— o (G(t) —x,(t

22 f(G(f)) ( () :())
where f(P,(t)) is the best fitness function found by the
i-th particle at iteration ¢;f( G(t)) is the best objective
function found by the swarm up to the iteration . With
this method, the velocity can be updated adaptively,

Usually, the inertia

v,(t+1) =wy, (1) +¢,r,

(Pi(t) _xi<t)) +

(12)
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which accelerates the convergence of the algorithm.
1.3.2 TIPSO algorithm

The classical PSO algorithm only uses the individual
optimal value and the optimal value of the population,
and does not take into account the information of other in-
dividuals in the population. With this in mind, an im-
proved PSO with the passive congregation was proposed
in Ref. [ 18 ]. The velocity updating of the IPSO algo-
rithm is shown as

vi(t+1) =w()v, (1) +c,r (P(1) —x, (1)) +
czrz(G(t) _xi(t)) +C3I”3(P(I) _'xi(t))
(13)

where P(t) is the current position of a random particle at
iteration ¢. The introduction of the passive congregation
can further increase the information exchange between
groups, so that the population can find the optimal value
more quickly.

2 Proposed MPSO Algorithm

In order to increase the exchange of information among
individuals, and make full use of the information in the
population, so as to improve the search speed and avoid
the local optimum, the average value of position is intro-
duced in this paper. Furthermore, in order to avoid the
extreme value existing in the position information, a
modified Tent mapping is proposed.

2.1 Modified Tent mapping

Tent mapping is a type of piecewise linear one-dimen-
sional chaotic mapping, which has the advantages of sim-
ple form, uniform power spectrum density and good cor-
relation properties. Compared with other chaotic se-
quences, such as logistics sequence, the improved Tent
mapping has better uniformity and is more suitable for
computer digital computation. The recursive formula of
Tent mapping is

2x, x,€[0,0.5]

2(1-x,) x, e(0.5,1] (14)

s, =

There are small cycles and some unstable periodic points in
the Tent sequence, e. g. (0.2, 0.4, 0.8, 0.6) and
(0.25, 0.5,0.75). In order to prevent the iterations from
falling into the small cycles, we design the modified se-
quence generation method. The specific steps are as follows.

1) Take a point x, that does not fall into the small cy-
cle, and set z(1) =x,, i=j=1.

2) Generate sequence x according to Eq. (14), i =i +1.

3) Suppose that the maximum iteration number is M, ,
if i >M,, then execute Step 5) ; else if x(i) € {0,0.25,
0.5,0.75} orx(i) =x(i-k), ke {0,1,2,3,4}, then
return to Step 4) , else return to Step 2).

4) Change the initial value of iteration; x(i) =z (j +
1) =z(j) +&, j=j+1, return to Step 2).

5) Terminate the operation and save sequence x.

The initial value and the iteration number are set to be
0.435 8 and 1 000, respectively. Fig.1 shows the gener-
ated sequence x.

1.0

0.8

0.6
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o)
“ I

0.2

% 200 400 600 800

1000

Number of iterations
Fig.1 The generated sequence diagram

2.2 MPSO algorithm

Suppose that the number of particles is N, the specific
steps of the Tent chaotic search are shown below.

1) The average value M of position is obtained, and
the definition of M is

s (1)
M= 2; N

2) The optimization variables from the interval [ a, b ]
are transformed into chaotic variables z from the interval
[ 0 ’ l :I ’

z,=(M,-a)/(b-a) i=1,2,--,D

where D is the number of variable dimensions.

3) N iterations are executed to generate z; according to
the generation method of chaotic sequence in Section
2.1,n=1,2,---,N.

4) The chaotic sequence is translated to the original
variable range as follows:

M =a+(b-a)Z]
Then, N feasible solutions can be obtained by
M =(My, My, -, M},)
5) The average value is calculated as

N

Pav: z

i=1

=[x

The velocity updating of the MPSO algorithm is shown as
vi(t+1) =w(t)v, (1) +c,r, (P,(1) =x,(1)) +
e, (G(t) =x,(1)) +c;r (P (1) —x,(1))
(15)
The inertia weight w in Eq. (15) is updated according to
Eq. (10), and the position is updated according to Eq. (9).

2.3 Performance evaluation

2.3.1 Classical test functions

In the test stage, eight classical test functions are intro-
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duced to test the performance of the MPSO and other
algorithms as follows:
Ackley

D
f,(x):20+e—20exp(_L 1 x;)_
5 D&
1 D
exp(_B;COS(Zﬂxi))

Schewefel

D

£,(x) =418.9829D+ ¥ ( -xsin(/x,))

i=1
Rastrigrin function

D

fi(x) = 2 [x’cos(2mx,) +10]

i=1
Griewank function
D 2 D

x; X,
fi(x) = ; 2000~ 11 cos(f)+1

Rosenbrock function

D-1

fs(x> = 2 [IOO(XHI _'x?>2 + (‘xi _1)2]

i=1

Sphere function

Jo(x) = Z X

Sum squares

fi(x) = Z, ix;

Dixon-price

fi(x) =(x _1)2 + ZD‘, i(2xf _'xi—])z

f, to f; have a common global minimum. Besides, f, to
f, are multimodal test functions, while f; to f; are unimod-
al test functions. Unlike the unimodal test functions, the
number of local optimal values in the multimodal test
functions increases with the increase of the dimension.
The basic information of the eight test functions is listed
in Tab. 1.

Tab.1 Basic information of the test functions

Function Dimension Solution space Optimal value
fi 30 [ -100,100]” 0
5 30 [ -500,500]" 0
f 30 [ -100,100]7 0
fa 30 [ -100,100]7 0
fs 30 [ -10,10]7 0
fs 30 [ -10,10]7 0
fr 30 [ -10,10]" 0
fs 30 [ -10,10]7 0

2.3.2 Parameter analysis

In the MPSO algorithm, the selection of ¢, influences
the performance of the algorithm. In order to analyze the
effect of ¢, on the performance of the algorithm, four
multimodal functions f, to f, and two unimodal functions
fs and f; are used to test the algorithm with different c,
values. In the MPSO algorithm, the population size N is
set to be 50 ; the inertia weight w adopts the linear decrea-
sing strategy in Ref. [ 14 ], and its variation range is 0. 7-
0.9; the learning factors ¢, and c, are set to be 0. 5-10.
The test results for ¢, are shown in Tab. 2.

Tab.2 Average fitness values of functions f, -f; with different c,

Function

“ / 5 2 fi fi 2

0 7.347 5 %102 64.872 45.294 9.2317 x10 73 1.235 4 x10? 1.061 4 x10~%
0.1 2.3915x1073 5.165 4 48.150 5.8652 x10~* 79. 659 1.317 6 x1071¢
0.2 5.9317 x10~* 6.153 3 39.223 1.6434 %1074 77.891 1.3207 107
0.3 1.934 6 x10~° 0.494 28 51.126 3.928 2 x10~* 96.976 8.478 3 x10 1
0.4 8.279 1 x10~* 0.287 35 1.208 5 x 10? 7.883 4 x10~* 92.040 2.8152x10°12
0.5 2.438 9 x10 73 0.763 94 1.893 3 x10? 4.0909 x10 74 63.385 2.1343 x10°1°
0.6 7.648 5 x10~* 1.8357 2.083 4 x10? 8.1427 x10 73 66.271 3.398 3 x10~*
0.7 4.638 1 x1072 36. 825 2.195 3 x 10? 2.8535x1072 52.547 5.462 4 x10 73
0.8 0.650 48 5.369 8 x 10? 2.271 2 x10? 0.140 26 65.894 9.384 9 x10 72
0.9 2.394 5 7.628 8 x10° 2.324 0 x 10? 0.334 19 80. 602 0.284 66
1.0 8.1827 9.749 5 x 103 2.517 6 x10? 0.623 57 97.674 1.582 4
1.1 36.474 1.297 6 x 10* 2.917 3 x10? 1.286 4 3.456 8 x 10? 31.685
1.2 4.816 5 x 102 2.648 7 x10* 3.047 4 x 10? 3.598 4 7.264 8 x 10% 5.678 4 x 10>

From Tab. 2, it can be seen that MPSO obtains good
results on function f, when ¢, =0.3. The best result for
function f, is obtained when c¢; = 0. 4. MPSO obtains
good results on function f; when c¢; =0. 1. For function
fs, the best result is obtained when ¢, =0.7. With ¢, =
0.2, MPSO obtains the best results for functions f, and
f.- The test results of MPSO on function f, and f; deterio-

rate with ¢; =0. 8. Considering the situation mentioned
above, the value range of c, is set to be 0.1-0.7.
2.3.3 Evaluation results

The population size of all the algorithms is set to be
50. For the GA algorithm, the crossover and mutation
probabilities are P, =0.7 and P =0. 15, respectively.
For the IPSO algorithm, the learning factors ¢, and c, are
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set to be 0.5, and the inertia weight w is set to be [0.7,
0.9]. For the ACPSO algorithm, the learning factors c,
and ¢, are set to be 2, and the inertia weight w is the
same as that in Ref. [ 18 ]. The proposed MPSO algo-
rithm is tested by the classical test functions f, to f,, and
is compared with GA, TIPSO and ACPSO algorithms. The

maximum number of iterations is 1 000. In order to make
the results more convincing, 100 experiments were car-
ried out. The mean, the standard deviations( SD) and the
average number of iterations ( /,
listed in Tab. 3.

) of the test results are

ter

Tab.3 Performance comparisons of MPSO, ACPSO, IPSO and GA algorithms

) GA IPSO ACPSO MPSO
Function
Mean( SD) I, Mean( SD) I, Mean( SD) I, Mean( SD) I,
0.583 47 0.253 78 7.728 1 x1073 2.2475x107°
i 256 201 175 186
! (0.928 64) (0.483 67) (1.359 2 x107°2) (5.6137x107%)
4.284 1 x10° 1.762 9 x 103 1.186 2 x 102 0.372 86
5 < 183 e 9 o 80 83
(7.482 5 x10%) (2.967 4 x10%) (2.857 3 x10%) (0.786 48)
1.605 3 x 102 1.051 2 x 102 28.955 . -2
1 9 286 9 135 117 7.506 7x10 128
(1.882 0 x10%) (1.452 2 x10%) (30.848) (0.179 09)
0.374 98 0.191 24 1.383 6 x10 2 1.657 6 x10 73
f: 247 162 145 149
¢ (0.279 88) (0.216 11) (1.836 8 x1072) (2.171 9 x10~5)
1.446 7 x10° 2.672 1 x10? 23.034 1.484 52
f: 219 ; 128 102 108
: (6.122 5 x10%) (8.429 4 x10%) (52.787) (2.420 25)
4.328 8 x1073 1.597 8 x 103 2.240 6 x10 % 2.3412x10°1°
fs T 186 T 134 T 82 e 97
(9.516 7x107%) (6.3265x107%) (7.516 1 x107%) (4.479 8 x10717)
3.5213 0.23175 4.073 8 x1072 2.6424x1073
f 282 201 157 164
7 (7.473 4) (0.782 44) (8.341 7x107%) (6.3275x107%)
. 2.519 7 x 10? 57.162 0.653 72 0.105 17
302 173 131 137
f (7.627 4 x10%) (1.138 4 x10%) (0.986 72) (0.312 16)

From Tab. 3, compared with GA and IPSO algorithms,
it can be clearly found that the MPSO algorithm has better
performance in terms of both the mean and standard devi-
ation. Compared with the ACPSO algorithm, the overall
convergence rate of MPSO is relatively slow, but the MP-
SO algorithm has better convergence precision. One rea-
son is that the ACPSO algorithm uses an adaptive learning
factor, which can speed up the convergence rate of the al-
gorithm. On the other hand, the proposed MPSO algo-
rithm increases the information exchange among individu-
als in the population, and can search the solution space
more carefully, so as to achieve better convergence preci-
sion.

In conclusion, the introduction of the average value of
position takes full advantage of the information in the
population, and the application of Tent mapping avoids
the emergence of extreme values, which improves the
convergence precision and the searching efficiency of the
MPSO algorithm.

3 Simulations

To demonstrate the effectiveness of the proposed MP-
SO algorithm, based on the systems with known model
structures and unknown model structures, the MPSO al-
gorithm is compared with some typical algorithms, inclu-
ding GA, IPSO and ACPSO algorithms. The basic pa-
rameter settings are similar to the settings in Section 2. 3.
Only considering the influence of population size ( P, )
on time complexity, the analysis of time complexity for

the proposed MPSO algorithm and other algorithms being
compared in a single run is concluded as follows; For the
MPSO algorithm, the time complexity for the initializa-
tion process is O( P, ) ; the time complexity for calculat-
ing the objective function values is O ( P, ); the time
complexity for updating and selecting the individual and
global optimal values is O(P,) ; the time complexity for
calculating the mean of the position information in passive
congregation terms is O ( P, ); the time complexity for
updating the location information of particles using Tent
mapping is O ( P, ) ; the time complexity for generating
new velocities and positions is O( P, ). Thus, the overall
time complexity of the MPSO algorithm in one iteration
is;: O(P,) +0(Py) +O(P,) +0O(P,) +0O(P,) +
O(P,), which can be regarded as O(MPSO) =O(P,).
For the GA algorithm, the time complexity is mainly
composed of roulette wheel selection, crossover and mu-
tation operations, and the corresponding time complexi-
ties are O (P,), O(P,) and O (P,), respectively.
Therefore, the time complexity of the GA algorithm can
be simplified as O(GA) = O(P;). Similarly, the time
complexities of the IPSO and ACPSO algorithms are
O(P,) and O(P,), respectively. In short, we can con-
clude that O(GA) > O(MPSO) £ O(IPSO) % O ( ACP-
SO).

The simulations are implemented using MATLAB 7.11 on
Intel (R) Core (TM) i5-2320 CPU, 3. 00 GHz with 4 GB
RAM. The specific identification steps are as follows.

1) Determine the vector to be searched ( model param-
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eters and order) .

2) Determine the performance index ( evaluation func-
tion). In this paper, the step signal is introduced to be
as the input signal. The sum of the squared errors be-
tween the output y(¢) and the true value y, (), i.e.

,
J= JO [y(t) —y,(t)]*dt is used as the performance

evaluation function.

3) The parameters of the algorithm are initialized to
generate random search vectors.

4) According to the steps of the MPSO algorithm, the
parameters in the fractional-order system are identified.

5) The iteration is repeated until the performance index
is satisfactory. Output the identification results.

The schematic diagram of parameter estimation for the
fractional-order system is shown in Fig.2.

System .
+
u / O——
Model —
Y
/ Estimated
algorithm

Fig.2 Schematic diagram of parameter estimation for the frac-
tional-order system

3.1 Identification of known fractional-order model

structure
Assume that the transfer function of the identified ob-
ject is
1
G =
2.48"" +1.358"7 +1

(16)

The range of parameters is set to be [0, 3], and the
random number for the model order changes from —-0.05
to 0.05. The identification vector is defined as

x=la, a, a, b, b,]

where a, ,a,, a, are the model parameters and b, , b, are
the orders of the model. The statistical results of the best,
the mean and the worst estimated parameters over 20 in-
dependent runs are shown in Tab. 4.

We can see from Tab. 4 that the obtained estimated val-
ues by MPSO are closer to the true values, which shows
that the MPSO algorithm is more accurate than GA, IPSO
and ACPSO algorithms. Furthermore, it can also be easi-
ly found that the best objective function values obtained
by MPSO are better than those obtained by other algo-
rithms.

The estimated parameters generated by various algo-
rithms in a single run are shown in Fig. 3. Fig. 3 reveals
that the performance of the MPSO algorithm surpasses the

2.5r

2.4

—-GA
-=-[PSO
—--ACPSO
—MPSO

523

2.2%,

0 5 10 15 20 25 30
Number of iterations

(a)

2.1

1.40r

- GA
- [PSO

~

N}

0 5 10 15 20 25 30
Number of iterations

(b)

1.10

3" 1.05

1.00

0.95

0 5 10 15 20 25 30
Number of iterations

(c)

2.8

0 5 10 15 20 25 30

Number of iterations

(d)

14r
-~ GA
= IPSO
13> - ACPSO

— MPSO
<'1.2

i

0 5 10 15 20 25 30
Number of iterations

(e)
Fig.3  Evolutionary curve of parameters estimation. (a) a;
(b) ay; (¢) as; (d) by; (e) by
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Tab.4 The estimation results of various algorithms for Eq. (16)

Tab.5 The estimation results of various algorithms for Eq. (16)

Algorithm GA IPSO ACPSO MPSO Algorithm GA IPSO ACPSO MPSO
a,  2.3810 2.38438 2.389 7 2.398 2 a 2.2718 2.2837 2.290 8 2.3547
a, 1.2954  1.2970 1.298 2 1.299 8 a, 1.116 7 1.128 7 1.138 4 1.182 1
Begg % 0-9902  0.9911 0.994 3 0.999 4 Bey O 0.933 7 0.943 7 0.948 4 0.992 3
b, 2.0889 2.0899 2.095 0 2.099 9 | 1.926 8 1.947 1 1.9775 2.0357
b, 1.1945 1.1950 1.198 2 1.199 6 b, 1.063 2 1.076 8 1.093 7 1.168 5
J 0.2451  0.209 4 7.8204 %1072 6.406 8 x107* J 14.138 0 10.603 0 7.657 1 0.492 0
a,  2.3752  2.3791 2.3853 2.394 8 a, 2.209 5 2.214 6 2.217 8 2.3219
a, 1.2710 1.2798 1.286 2 1.298 7 a, 1.051 3 1.0518 1.1276 1.167 2
Mean @ 0.9826 0.984 7 0.995 8 0.998 2 Mean B 0.892 7 0.903 7 0.940 9 0.989 2
b, 2.0743 2.0781 2.090 1 2.098 1 b, 1.9516 1.9520 1.960 7 2.026 3
b, 1.1807 1.1858 1.194 8 1.198 2 b, 1.049 7 1.052 8 1.089 4 1.144 6
J 0.7332 0.5933 4.8415x1072  7.701 4x1073 J 24.489 0 21.098 0 11.148 0 1.3132
a,  2.3527  2.3599 2.3829 2.4117 a, 1.980 8 2.027 3 2.113 8 2.2121
a, 1.2637 1.2751 1.2835 1.283 8 a, 0.986 8 0.995 4 1.087 4 1.148 5
Worst 3 09775 0.9817 0.994 2 0.996 4 Worst @ 0.873 7 0.897 6 0.927 5 0.954 7
by,  2.0656 2.0736 2.087 2 2.096 4 b, 1.858 2 1.872 3 1.910 6 1.937 1
b, 1.1784 1.1803 1.192 6 1.191 4 b, 0.975 7 0.982 8 1.097 2 1.115 4
J 1.2472  0.836 1 9.3503x1072  1.781 5x1072 J 37.8570 26.896 0 15.804 0 9.2557

IPSO algorithm due to the full use of information among
individuals. Moreover, in the early stage of evolution, the
convergence rate of the ACPSO algorithm is slightly faster
due to the introduction of an adaptive learning factor.
However, the estimated parameters generated by MPSO
yield a better precision as compared to that of other com-
parison algorithms, which suggests that our presented algo-
rithm is more susceptible to a small change in parameters.

Moreover, considering the time complexity, we can
easily see that the MPSO algorithm outperforms the GA
algorithm whether in the convergence characteristics or in
the time complexity. In addition, under the same level of
time complexity with the IPSO and ACPSO algorithms,
the MPSO algorithm has a better convergence rate and ac-
curacy.

In order to study the influence of the variation range of
order on the identification, the variation range of order is
set to be [ —=0.5, 0.5], and other conditions remain un-
changed. The statistical results are shown in Tab. 5.

From Tab. 5, we can see that the identification effect
can be improved significantly with the decrease of the
random number range of order. The main reason is that
the objective function value affected by the order changes
exponentially, which indicates that there is a significant
change in the function value with a minor change of or-
der. Therefore, the appropriate reduction of the order
helps to shorten the convergence time of the algorithm
and improve search ability.

3.2 Identification for unknown fractional-order mod-
el structure

In the model identification, the model structure is often
unknown. When the assumed model structure matches the
real model, the error is smaller than that of other models.
In the actual identification, the high-order system is rela-

tively small, and the higher order fractional-order system
can be reduced to one of the models in Tab. 6. There-
fore, the three models in Tab. 6 are selected for simula-
tion study. Assume that the transfer function of the iden-
tified object is

1
G= (17)
2,587 +1.48"* +0.85"° +1
Tab.6 The model structure
Model Structure Parameter
1
1 a, 8" +a, ay,a,,b,
1
— b, ,b
2 a, 8" +a,8" +a, G1,02,03,01,%
3 1 ay,a,,a;s,
alS"‘ +a2S”2 +a3S"3 +ay ay by by by
4 1 a ,a,,as,ay,

b b b b
a8 +a,8°% + a3 87 +a, 5™ +as as,b,,b,,by,b,

The statistical results are shown in Tab.7. From Tab. 7,
we notice that the MPSO algorithm outperforms other al-
gorithms being compared. In addition, we can also find
that the performance index J of model 3 is significantly
small, so model 3 is the closest to the target. In addition,
taking the J value of model 3 as the dividing point, the J
value decreases first and then increases. Furthermore, it
is clear that the difficulty of parameter identification
greatly increases with the increase in the number of the
parameters in the system.

4 Conclusions

1) A new parameter identification scheme based on a
modified PSO algorithm is proposed. The introduction of
the average value of position information makes full use
of the information exchange among individuals in the
population, which can improve the precision and efficiency
of optimization. By utilizing the uniformity and ergodicity



Parameter identification of the fractional-order systems based on a modified PSO algorithm 13

Tab.7 The estimation results of various algorithms for Eq. (17)
Algorithm GA IPSO ACPSO MPSO
a, 3.8946 3.7817 2.977 4 2.8127
Model 1 % 1.713 7 1.637 1 1.498 7 1.418 3
b, 1.597 5 1.582'1 1.393 7 1.265 1
J 17778 x10* 1.479 4 x10> 1.090 6 x10> 91.3450
a, 3.6315 3.624 2 3.583 4 3.478 5
a, 1.3258 1.3375 1.3917 1.406 1
Model 2 @ 1.044 2 1.053 3 1.017 5 1.089 3
b, 2.367 2 2.356 1 2.3107 2.257 0
b,  0.9218 0.913 7 0.901 6 0.849 7
J  1.0818x10> 88.8500 39.0570  15.4040
a, 2.897 1 2.8732 2.857 4 2.8417
a, 1.219 3 1.184 1 1.171 8 1.187 3
a;  0.9012 0.892 4 0.887 3 0.875 1
Model3 % 1.138 5 1.104 7 1.054 2 1.017 6
b, 2.354 1 2.283 1 2.267 5 2.2715
b, 1.375 4 1.369 1 1.360 1 1.358 2
by  0.679 1 0.670 2 0.668 2 0.6619
J  17.506 0 8.1816 1.6752 0.3857
a, 0.257 4 0.302 4 0.348 3 0.295 4
a,  2.0948 2.3375 2.2773 2.183 2
a, 1.106 7 1.078 6 1.107 4 1.139 3
a, 1.293 8 1.2152 1.164 8 1.1317
as 1.347 4 1.128 7 1.114 3 1.073 6
Model 4, 5 4781 2.246 4 2.207 4 2.156 1
b,  2.6021 2.6828 2.628 7 2.5059
by 1.621 4 1.593 9 1.507 2 1.494 7
b,  0.8625 0.838 9 0.806 7 0.781 6
J  1.0643x102  72.6820 36.1490  7.9553

of Tent mapping, MPSO can avoid the extreme value of
position information, so as not to fall into local optimal
values.

2) Compared with the other three algorithms, the iden-
tification results verify the fine searching capability and
efficiency of the presented algorithm. For the systems
with known model structures and unknown model struc-
tures, the proposed approach can obtain the estimated pa-
rameters with a faster convergence rate and higher conver-
gence precision.

3) In conclusion, the proposed MPSO algorithm is an
efficient and promising approach for parameter identifica-
tion of the fractional-order system.

We mainly study the fractional-order linear model with
constant coefficient in this paper. In future work, we will
further study the parameter identification of the fractional-
order system which contains nonlinearity models and in-
put signals with fractional differential components.
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