Journal of Southeast University (English Edition)

Vol. 34, No. 1, pp. 28 =35

Mar.2018 ISSN 1003—7985

A hybrid algorithm based on ILP and genetic algorithm
for time-aware test case prioritization

Sun Jiaze'?

Wang Gang'

('School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an 710121, China)

(*Shaanxi Key Laboratory of Network Data Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China)

Abstract: To solve the problem of time-aware test case
prioritization, a hybrid algorithm composed of integer linear
programming and the genetic algorithm (ILP-GA) is
proposed. First, the test case suite which can maximize the
number of covered program entities and satisfy time constraints
is selected by integer linear programming. Secondly, the
individual is encoded according to the cover matrices of
entities, and the coverage rate of program entities is used as
the fitness function and the genetic algorithm is used to
prioritize the selected test cases. Five typical open source
projects are selected as benchmark programs. Branch and
method are selected as program entities, and time constraint
percentages are 25% and 75% . The experimental results show
that the ILP-GA convergence has faster speed and better
stability than ILP-additional and ILP-total in most cases,
which contributes to the detection of software defects as early
as possible and reduces the software testing costs.

Key words: test case prioritization; integer linear
programming(ILP); genetic algorithm; time constraint

DOI: 10.3969/j. issn. 1003 —7985.2018. 01. 005

egression testing is costly in software evolution,
R which consumes 80% of the overall testing budg-
. Test case prioritization (TCP) is an efficient and
practical regression testing technique, and it can be used
to reorder the test cases to achieve the goal of improving

1
ets'!

the test efficiency and reducing the test cost. Over the
past few years, many test case prioritization techniques
have been proposed to study various prioritization approa-
™ and coverage criteria’ . However, these approa-
ches do not definitely consider the time budget and the
execution time difference of test cases. Executing the en-
tire test suite is sometimes time-consuming, which does
There-

ches

not allow for the execution of all the test cases.

Received 2017-10-15, Revised 2018-01-21.

Biography: Sun Jiaze (1980—), male, doctor, associate professor,
sunjiaze@ 126. com.

Foundation items: The Natural Science Foundation of Education Minis-
try of Shaanxi Province (No. 15JK1672), the Industrial Research Project
of Shaanxi Province (No. 2017GY-092); Special Fund for Key Disci-
pline Construction of General Institutions of Higher Education in Shaanxi
Province.

Citation: Sun Jiaze, Wang Gang. A hybrid algorithm based on ILP and
genetic algorithm for time-aware test case prioritization[J]. Journal of
Southeast University (English Edition), 2018, 34(1):28 —35. DOLI: 10.
3969/j. issn. 1003 —7985.2018.01.005.

fore, the test cases are usually executed under time con-
straints.

Many researchers have focused on time-aware test case
prioritization. Walcott et al. ' reduced time-aware test
case prioritization to the zero/one knapsack problem, and
used the genetic algorithm to solve the problem. Zhang et
al. " selected a subset of original test suites by integer lin-
ear programming (ILP), and prioritized the selected test
cases by traditional total prioritization and additional pri-
oritization. You et al. " used the SIEMENS suite and
space program as empirical research objects to prioritize
test suites by random ordering, total strategy, additional
strategy, ILP-total, and ILP-additional, respectively. Do
et al. " found that the best effective TCP technology un-
der a certain time constraint cannot ensure the best effect
1. P pres-
ented a unified test case prioritization approach that en-
compassed both the total and additional strategies. Lu et
al. " found that the genetic algorithm can obtain better
results than other techniques, such as random, total, ad-
ditional, and search-based techniques.

As the above literature shows, greedy strategy and ran-
dom ordering are not always effective under different time
constraints. The convergence speed of the genetic algo-

under other time constraints. Recently, Hao et a

rithm is not fast, and the initial value of TCP is sensitive.
The test case selection involves a subset which is selected
from the original test suite. Broadly speaking, it is relat-
ed to the research on regression test case selection''" and
test case reduction'”. Meanwhile, ILP is an effective op-
timization method for the zero/one knapsack problem'” .
Therefore, this paper uses ILP for the test case selection
and the genetic algorithms for prioritizing the selected test
cases. We compare ILP-GA with two greedy-based ap-
proaches under different time constraints, and the experi-
mental results show that our approach is superior to greedy-
based approaches. In summary, the paper makes the fol-
lowing contributions: It is the first attempt to combine
ILP and genetic algorithms for time-aware test case priori-
tization, and the empirical evaluation of the proposed ap-
proach and approaches of the greedy strategy based ILP is
carried out in detail; the time complexity of ILP-GA is
analyzed.

1 Time-Aware Test-Case Prioritization

Time-aware test case prioritization is usually formalized

A hybrid algorithm based on ILP and genetic algorithm for time-aware test case prioritization 29

as follows.

Given: A test suite, S; the set of permutations of all
subsets of S, P; objective function F and time cost func-
tion 7, which range from permutations to real numbers;
time constraint, 7, .

Problem: Time-aware test case prioritization aims to
find a permutation S’ e P satisfying that for any element
S"e P(S"#S8"), F(S'")=F(S"), T(S") <t and 7(S")
SY

In the problem, P is the set of all possible ordering of

max ?

max *

S; T is a function, and it yields the execution time of that
ordering when it is applied to any ordering of S, so we
can decide whether an ordering satisfies the time con-
straint through judging the inequality 7(S") <1t the
function F is applied to any ordering and returns a fitness
value of that ordering.
measures a test sequence’s ability of detecting bugs as

max ?

In this paper, the function F
early as possible, and we stipulate that a test sequence
with a higher fitness value is superior to that with a lower
fitness value.

2 Proposed Approach

In this paper, we propose a new approach for time-
aware test case prioritization by combining integer linear
programming and the genetic algorithm. As shown in
Fig. 1, our approach is composed of two steps. First, we
use the ILP model to select a subset of original test suites
which satisfies the time constraint. Secondly, we priori-
tize the subset by the genetic algorithm.

Coverage

Original test

information :
& ILP model suite S and
artli(:n eex(enccligs(in solver time
constraint

Ccases

Selected
test suite
5

Genetic
algorithm

Sorted
test suite
S//

Fig.1 The description of ILP-GA

We consider branch coverage criteria and method cov-
erage criteria in this paper. For the ease of presentation,
we present our approach only in terms of branch cover-
age.

2.1 Test case selection

Test case selection can be formalized as two ILP mod-
els, and each model is composed of decision variables,
an objective function and a constraint system. As shown
in Fig.2, we denote the original test suite as S and two
subsets of the original test suite are denoted as S, and S,,

respectively. S, satisfies the time constraint and maximi-
zes the number of covered branches, and it is selected by
the first ILP model. We denote the sum of time of S, as
t,, so the remaining time from the time constraint is ¢
—t,. Furthermore, S, will be selected by the second ILP
model. §, has the maximum sum of the number of bran-
ches covered by each test case that belongs to S,(S; =S -
S,) and the total time of S, does not exceed ¢ —f,.
Thus, after solving the two ILP models, all the test cases
that have been selected can be denoted as S'(S' =S, U
S,), and we denote the number of these test cases as n.
The first ILP model will be built as follows.

Coverage

Original test

information }
and execution ILP model solver Smtteirgeand
time of test o

cases

Select;d

test suite
Sl

ILP model solver
S-S

1
Selected
test suite
s
Fig.2 The technological process of ILP

2.1.1
For each test case, there is a Boolean decision variable

Decision variables

to represent whether the test case is selected or not. The
test suite is denoted as S = {s,, 5,, ..
decision variables are denoted as x,(1 <i<n). x,is de-
fined as

., s,}, and n Boolean

(1)

X =

i

{1 if s,(1<i<n) is selected

0 otherwise

Furthermore, there is another group of Boolean deci-
sion variables to represent whether each branch is covered
by one or more test cases. A set of branches are denoted
as B, ={b,, b,, ..

1

2.1.2 Objective function

. b,}, and y, is defined as

if some selected test cases cover b,

(2)

otherwise

Our goal of test case selection is to maximize the num-
ber of covered branches, so the objective function can be
defined as

F = manyj (3)
j=1

In the objective function, if any selected test case does
not cover bj, the value ¥; is 0. Thus, Eq.(3) guarantees
to count each covered branch just once.

2.1.3 Constraint system

To ensure that the selected test cases satisfy the time

constraint, an inequality is defined as

30

Sun Jiaze and Wang Gang

n

Y T(s)x; < t,,, (4)

i=1

Formula (4) indicates that the sum of execution time of
x- Durther-
more, there is a group of inequalities to ensure that, if y,
=1(1<j<m), atleast one test case covering b, is select-
ed. There is a need to represent whether a test case covers
a branch, and it can be denoted as

1
¢y = {0

Using the coverage information in Eq. (5), the ine-
qualities can be defined as

all the selected test cases is no more than ¢

if s, cover b,
(3)

otherwise

N

2 CiX; =Y, Il<sj<sm (6)
i=1
2.1.4 Further test case selection

A subset of test cases that can satisfy the time con-
straint and maximize the number of branches has been se-
lected by the first ILP model, but there may be some time
left over from time budget, so the second ILP model will
be built for later selecting test cases to enhance the fault
detection in the time constraint. It is noted that further se-
lecting does not necessarily increase the number of cov-
ered branches, but these test cases may contribute to de-
tecting faults.

The unselected test cases in S are denoted as C(C =
{c,,¢ys ..., ¢, }) and time left from 7
The L Boolean decision variables are denoted by z,(1 <k
<L), and z, is defined as

is denoted as f,.

1 if ¢, (1<k<L) is further selected)
“= {0 otherwise

The objective function shows that a subset of test suite
that has the maximum sum of the number of branches
covered by each test case should be selected from C, and
it is defined as

L

maxz count(c,)z, (8)

k=1
The constraint system indicates that the sum of execu-
tion time of all the selected test cases from C is no more

than ¢ and it is defined as

left?

1

Y T(c)z < by (9)

k=1

2.2 Test case prioritization

After the test case selection, the time-aware test case
prioritization is transformed into the traditional test case
prioritization. Test case prioritization is a NP-complete
problem. The genetic algorithm is a heuristic search algo-
rithm which provides a general framework for solving
complex problems. The genetic algorithm is used to pri-

oritize test cases, as described in Algorithm 1. It should
be noted that the cover matrix A is used to record the cov-
erage information of program entities of a program. If the
Jj-th program entity is covered by the i-th test case, then
a; =1, otherwise a; =0.

Algorithm 1 Genetic algorithm

Input: Test suite S; the number of initial sequences of
test cases N; the maximum number of iterations g, ;
crossover probability P.; mutation probability P
age information of program entities M_; the execution

. cover-
time of test cases in S, Tj.

Output: A test sequence with the highest fitness value
o

max *

. R e
repeat
R,«—R, U {InitializeRandomPopulation(S, M) }
until |R, | =N
g«0
repeat
F—J
for o, e R,
F«—FU {computeFitness(o,, M., T) }
o,, o,«EliteTwoBest(R , F)
Rg +1
repeat
o, o,«Select(R, — {0, 0,}, F)
o,, o, «Crossover(P ., o;, o;)
o,<—Mutation(P,, o)
o<Mutation(P, o,)
Rg+1 :Rg+l U {0':,} U {0',,}
until \ R N
g—g+1
. until g >g
< FindMaxFitnessSequence(R
22. return o

0 3N AW

— e \O
=

—0,, 0,

e e e e e
0 N N Lt W

g+l‘:

NN =

. g ,1,F)

g
2.2.1 Genetic algorithm framework

We denote the subset S’ in section 2.1 as S. All of
probabilities P,, P, e [0, 1]. any o, €
perms(2°) has the form o, = (S,,--+,S,), and n is the

In general,

number of test cases in o,. perms(2°) represents the set
of all possible sequences and subsequence of 7. A test se-
quence is composed of n numbers and we denote a test se-
quence as {w, ==, w, , W, ,-,w,) (1<w,<nand w,#
w,,,). A test sequence is an integer array and there is a
number w; in each position of the integer array.

As shown in Algorithm 1, in the loop beginning on
line 3, the algorithm creates a set R, containing N random

i+l

test sequences o, from perms(2*). R, is the first genera-
tion in the iteration. If a test sequence is created, then
computeFitness(o, ,M_,T,) will be used to compute the
fitness of this test sequence. We denote F,; as the fitness
value of ;. We also use F ={F,,F,,---,F,) to denote
the sequence of fitness for each o, e R, ,0<g=<g,,,.

A hybrid algorithm based on ILP and genetic algorithm for time-aware test case prioritization 31

The EliteTwoBest(Rg ,F) on line 10 chooses the two
best test sequences in R, to be elements for the next

generation R which applies the elitist selection tech-

g+l
nique. On line 13, Select(R, - {o,,0,{,F) identifies
pairs of sequences | o, o, | from R, through a roulette
wheel selection technique. The Crossover(P_,o;,0,) on
line 14 may form two new test sequences | ¢ p ,o,| based
on P,. Each test sequence in the pair {0, may then
be mutated based on P .

After each of these operations has been executed, both
o, and g, are set into R, ,
transformations are applied to all pairs selected by
Select(R, - {o,,0,|,F) until R, contains N test se-

as seen on line 17. The same

quences. In total, g . sets of N test sequences are itera-
tively created as described in Algorithm 1 on lines 6 to
quence with the greatest fitness, o
line 21.

2.2.2 Fitness function

is determined on

max 9

computeFitness (o, , M., T,) on line 9 uses F(o,,M_,
T,) to calculate the fitness value. The fitness function,
represented by F(o,,M_,T,), assigns each test sequence
a fitness value based on the program entity coverage (P)
of that sequence and the execution time of each test case
(T((5))).

F(o,,M_,,T,) is computed by summing the products
of execution time T((S;)) and the P of the subsequence
gy =(8,,8,,,8,) for each test case S, € o,. The
F(o,,M_, T,) gives precedence to test sequences that
have more codes covered early in execution. Formally,
for some o, e perms(2°) ,

lol

F(o,,M,,T,) = Y T({S;)) x P(c

J=1

g M) (10)
2.2.3 Selection operation
The selection operation is roulette wheel selection.
First, the fitness values of test sequences are denoted as
{fisfos o fy!, and then the sum of the fitness values is
N

Zfi . Secondly, we can obtain N results by computing
i=1
N

f/ z f; , then the test sequences are sorted by descending

i=1
results and the result of each sequence accumulates the re-
sults in front of it. Finally, a random number re [0,1)
is generated, and the first sequence whose accumulated
result is greater than or equal to r is selected. The selec-
tion operator is repeated until enough sequences are se-
lected to fill the set R, ,,. The number of sequences is N
this moment.
2.2.4 Crossover operation

As explained in section 2. 2. 1, pairs of test sequences
are selected from R,. Crossover (P, o;, o,) performs
crossover operation and creates two new test sequences

from{o;,o,f. A random number r, e [0,1) is genera-
ted, and the crossover operator is executed when P, is
greater than r,. When the crossover begins, another ran-
dom number k € [0, n) is generated as the crossover
point, and n is the number of test cases in S. The first k
numbers in ¢; are copied to the first k positions in o,. Let
us denote the numbers which are in the ¢, and which is
not equal to the first kK numbers in the o; as n,,, and then
we use each number in n,, to fill o, one by one into the
last (n —k) positions in ¢,. Thus, a new test sequence
o, is generated by the above steps. Analogously, o, is al-
so generated as the same steps. Finally, we obtain the
two new test sequences { o, ,o,| by crossover operation.
2.2.5 Mutation

Mutation(P, , o,) is used to mutate o,. First, a ran-
dom number r; € [0,1) is generated. If P, is greater
than r,, the mutation operation is executed. If mutation is
to occur, the two positions will be selected from ¢, and
the two test cases which are in the two positions will be
swapped. Mutation(P, ,o,) is used to mutate o,, and it
is similar to Mutation(P, o).

2.3 Analysis of algorithm

First, we analyze the time complexity of the genetic al-
gorithm as follows. We denote the number of test cases
as n, and the number of program entities of a program as
n,. The time complexity of reading coverage information
from I/0 is O(n n,). The time complexity of the read-
ing execution time of test cases from I/0O is O(n,). The
time complexity of initializing population is O (n,N).
The time complexity of computing fitness values for all
test sequences is O(n,n,N). The time complexity of elite
strategy is O(N*). We use roulette wheel selection tech-
nique and bubble sort in selection operation, so the time
complexity of selection operation is O (n,n,N) +
O(N*)N/2. The time complexity of crossover selection
is O(n,N). The time complexity of the mutation opera-
tion is O(N). Therefore, the time complexity of the ge-
netic algorithm is O (n,n,N) + O(n,N) + O(N*). The
calculation of fitness values and genetic operators is main
time overhead, and the number of calling the genetic al-
gorithm determines the efficiency of the algorithm.

Secondly, if we denote the number of decision varia-
bles as n and the number of constraint conditions as m,
then the time complexity of ILP is O(mn). Furthermore
n=n, + n, approximately and m = n, approximately, so
the time complexity of ILP is O(n,(n, +n,)).

In summary, the time complexity of ILP-GA is
O(n,n,N) +O0(n,N) + O(N*) +O0(n,(n, +n,)). The
time complexity of ILP-GA is determined by n,, n, and
N. The ILP-GA is a polynomial algorithm.

3 Empirical Evaluation

We implemented the approach described in Section 2

32

Sun Jiaze and Wang Gang

and measured its effectiveness and stability.
3.1 Experimental setup

In the experiments, we used five classical open sources
Java projects®’ from GitHub, which had been widely
used in software testing research, and they are described
in Tab. 1. All experiments were performed on Windows
764 bit, a 3. 60 GHz Intel Core 3 processor and 8 GB of
main memory. The ILP-total and ILP-additional were im-
plemented in the Python language. The genetic algorithm
was implemented in the Java language based on JDK
1.7.0. We ran these algorithms in Eclipse 4. 3. To im-

plement the ILP-based techniques (i. e. , total & addition-
al test prioritization via ILP), we used a mathematical
programming solver, GUROBI Optimization (http://
www. gurobi. com), which was used to represent and
solve the equations formulated by the ILP-based tech-
niques. The number of initial orderings of test cases is
60. We adopt the same parameters in Ref. [6] to com-
pare the experimental results with the classical result. The
number of iterations for the GA is 25. The crossover
probability and mutation probability are 0. 70 and 0. 10,
respectively.

Tab.1 Experimental subjects

The number of The number

The number of

Subject . The website of project
branches of methods test cases
Jasmine-maven 95 138 24 https://github. com/searls/jasmine-maven-plugin
Java-apns 82 128 47 https : // github. com/notnoop/java-apns
Ladj 967 536 245 https ;// github. com/ vkostyukov/la4j
Metrics-core 460 695 129 https :// github. com/nablex/ metrics-core
Scribe-java 62 173 51 https://github. com/Kailashrb/scribe-java

3.2 Experiments and results

3.2.1 Effectiveness for different techniques
ILP-total, ILP-additional and ILP-GA were used to
solve time-aware test case prioritization in our experi-
ments, and we compared them by effectiveness and sta-
bility. We used 25% and 75% as the two different time
constraints. The branch and method are used as test ade-
quacy criteria. As shown in Tab. 2, each project was ap-
plied by three approaches under different time constraints
and different test adequacy criteria, so each project will
have four different comparison methods by three approa-

ches. For each comparison method, we ran three algo-
rithms 20 times, then calculated the average value of 20
fitness values of each algorithm. The prioritization effi-
ciency of the ILP-GA is improved on average by approxi-
mately 54% and 13% , respectively, under 25% time
constraints and it is improved on average by, approxi-
mately, 42% under 75% time constraints, so we con-
clude that our technique is effective. It should be noted
that the branch coverage of the last two projects have a
close average fitness value under 25% time constraint,
and we speculate that the two average fitness values are
close to optimal solutions.

Tab.2 Experimental results of three algorithms

Average fitness value

Subject Algorithms Time constraint 25% Time constraint 75%
Branch coverage Method coverage Branch coverage Method coverage
ILP-GA 2 203.779 1 788.725 8 504. 132 7 494. 476
Jasmine-maven ILP-additional 2 094.011 1736.797 7 560. 532 7 491. 445
ILP-total 1 407. 663 1171.757 6 128. 897 5519.373
ILP-GA 187. 693 214.997 187.912 213.958
Java-apns ILP-additional 180. 316 175. 434 180. 246 175. 090
ILP-total 106. 415 135.280 106. 357 135.179
ILP-GA 553.364 551. 660 1 647.211 1 663. 788
Ladj ILP-additional 322.437 498.952 609. 098 785. 844
ILP-total 270. 352 313.703 1 001. 389 1 184.559
ILP-GA 197.274 173. 841 718. 520 650. 585
Metrics-core ILP-additional 176. 254 172. 447 542.923 513. 442
ILP-total 145. 690 137. 439 565. 031 460. 181
ILP-GA 55. 645 44.184 209. 748 176.717
Scribe-java ILP-additional 55.490 44.071 152.235 176. 164
ILP-total 45. 844 33.850 179. 586 151. 966

3.2.2 Stability for different techniques
The boxplots in Fig. 3 and Fig. 4 depict the results of

the three approaches under two different time constraints.
We have the following observations. First, whether the

A hybrid algorithm based on ILP and genetic algorithm for time-aware test case prioritization 33

time constraint is 25% or 75% , the results of ILP-GA are
overall superior to the ILP-total and ILP-additional for Ja-
va-apns and La4j. Secondly, we consider the distribution
of results which is generated by each approach. As can be
seen from Fig. 3 and Fig. 4, the height of each box is

© 200

2l —

£ 180 _

8 160

= 140

@

5120

<100 ;

ILP-GA ILP- ILP-total

additional
(a)

© 230

Sa10f ——

8190

=170 ==

%D

5 150

< 130 1 1]

ILP-GA ILP- ILP-total

additional
(¢)

Fig.3

small. The fitness values in the box are close and concen-
trated. Thus, all the approaches perform stably. In short,
no matter what the time constraint is and what the test ad-
equacy criterion is, our approach always achieves the ex-
pected effectiveness and stability.

g 610
T; 560
2 510
2 460
& 410
[*)

2360
3 310
<260

]
ILP-GA ILP- ILP-total

additional

(b)

© 580
2

s 530
2480
g

£ 430
Q
?380
2330

< 1 ! !
280 ILP-GA ILP- ILP-total

additional

(d)

Box-plots of result contrast of ILP-GA, ILP-additional and ILP-total under 25% time constraint. (a) Branch coverage of Ja-

va-apns; (b) Branch coverage of Lad4j; (c¢) Method coverage of Java-apns; (d) Method coverage of La4j

© 200
=
T 180

—_ = =
[SS I e
==

Average fitness

ILP-total

—_
(=3
(=]

ILP-GA ILP-

additional

(a)

190

150
130

Average fitness valu
=
(=]

ILP-GA ILP-

additional

(¢)

ILP-total

Fig. 4

o1 780
=
<;1580
21380
Q

%
S

Average fitn:
~N O
(o]

S O

ILP- ILP-total
additional

(b)

wn
(e
(=]

ILP-GA

760 ILP-GA ILP- ILP-total

additional

(d)

Box-plots of result contrast of ILP-GA, ILP-additional and ILP-total under 75% time constraint. (a) Branch coverage of Java-

apns; (b) Branch coverage of La4j; (c) Method coverage of Java-apns; (d) Method coverage of Ladj

3.2.3 Convergence for ILP-GA

Fig. 5 and Fig. 6 describe the change of the average fit-
ness value along with iterations for three projects under
two time constraints. As can be seen from Fig. 5 and Fig.
6, the average fitness values improve along with itera-
tions. It also can be seen that the rise of curves is a near-
linear trend in the former iterations and curves become
less steep in the last several iterations. Therefore, the
convergence rate of ILP-GA is fast, and our experimental

results are close to the global optimal solutions.
4 Conclusions

1) Considering the rate of coverage, our approach out-
performs the ILP-additional and ILP-total under different
time constraints.

2) Considering stability and convergence, our approach
has good stability and a fast convergence rate.

3) When the time constraint is not tight, our approach

34 Sun Jiaze and Wang Gang

1 1 1 1 1 <,: 1 1 1 Il]

510 15 20 25 02— —16 15 20 25
Iteration Iteration
(a) (b)

5I 1'0 1'5 éo 2'5 5I IIO 1 I5 2b 2IS
Iteration Iteration
(c) (d)

Fig.5 The convergence of ILP-GA of Java-apns. (a) Branch coverage under 25% time constraint; (b) Method coverage under 25% time

constraint; (c¢) Branch coverage under 75% time constraint; (d) Method coverage under 75% time constraint

5 10 15 20 25
[teration

(a)

Average fitness value

5 10 15 20 25
Iteration

(¢)
Fig. 6

05

=5

>3

25

£5

=5

(5]

23

ES 1 1 1 1 1]

23— 10 15 20 25

[teration
(b)

Average fitness value
N
wn
(=)

15 20 25
Iteration

b 5 10

(d)

The convergence of ILP-GA of La4j. (a) Branch coverage under 25% time constraint; (b) Method coverage under 25% time con-

straint; (c¢) Branch coverage under 75% time constraint; (d) Method coverage under 75% time constraint

is superior to other techniques, but ILP-additional can
perform competitively when time constraint is tight.

In future work, we intend to explore the following sev-
eral aspects. First, we intend to study new algorithms and
new evaluation indices to improve the effectiveness of pri-
oritization. Secondly, we plan to implement a prototype
tool to complete the whole test case optimization process
from the information collection to the result visualization.

References

[1] Chittimalli P K, Harrold M J. Recomputing cover age in-
formation to assist regression testing [J]. IEEE Transac-
tions on Software Engineering, 2009, 35(4) .452 —469.
DOI; 10. 1109/TSE. 2009. 4.

[2] Li Z, Harman M, Hierons R M. Search algorithms for
regression test case prioritization [J]. IEEE Transactions

on Software Engineering, 2007, 33(4) :225 —237. DOI.
10. 1109/TSE. 2007. 38.

[3] Hao D, Zhang L M, Zhang L, et al. A unified test case
prioritization approach [J]. ACM Transactions on Soft-
ware Engineering and Methodology, 2014, 24 (2) .1 —
31. DOI:10.1145/2685614.

[4] Luo Q, Moran K, Poshyvanyk D. A large-scale empiri-
cal comparison of static and dynamic test case prioritiza-
tion techniques[J]. Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering. Seattle, WA, USA,2016. 559 —
570. DOI.10. 1145/2950290. 2950344.

[5] Mei H, Hao D, Zhang L M, et al. A static approach to
prioritizing junit test cases [J]. IEEE Transactions on
Software Engineering, 2012, 38(6) :1258 — 1275. DOI;
10.1109/TSE. 2011. 106.

[6] Walcott K R, Soffa M L, Kapfhammer G M, et al.

A hybrid algorithm based on ILP and genetic algorithm for time-aware test case prioritization 35

Time aware test suite prioritization [C]//Proceedings of
the 2006 International Symposium on Software Testing
and Analysis. Portland, Maine, USA, 2006: 1 — 11.
DOI:10. 1145/1146238. 1146240.

Zhang L, Hou S S, Guo C, et al. Time-aware test case
prioritization using integer linear programming[C]//Pro-
ceedings of the Eighteenth International Symposium on
Software Testing and Analysis. Chicago, IL, USA,
2009 . 213 —224. DOI:10. 1145/1572272. 1572297.
YouDJ, ChenZ Y, XuB W, et al. An empirical study
on the effectiveness of time-aware test case prioritization
techniques [C]//Proceedings of the 26th ACM Symposi-
um on Applied Computing. Taichung, China, 2011 . 1451
—1456. DOI:10. 1145/1982185. 1982497.

Do H, Mirarab S, Tahvildari L, et al. The effects of
time constraints on test case prioritization: A series of
controlled experiments [J]. IEEE Transactions on Soft-

ware Engineering, 2010, 36 (5):593 — 617. DOI. 10.
1109/TSE. 2010. 58.

[10]Lu Y F, Lou YL, Cheng S Y, et al. How does regres-

sion test prioritization perform in real-world software evo-
lution [C]//Proceedings of the 38th International Con-
ference on Software Engineering. Austin, TX, USA,
2016:535 —546. DOI.10. 1145/2884781.2884874.

[11] Yoo S, Harman M. Regression testing minimization, se-

lection and prioritization; A survey [J]. Software Tes-
ting, Verification and Reliability, 2012, 22 (2) .67 —
120. DOI;10. 1002/ stvr. 430.

[127] Alipour M A, Shi A, Gopinath R, et al. Evaluating non-

adequate test case reduction [C|//Proceedings of the
31st IEEE/ACM International Conference on Automated
Software Engineering. Singapore, 2016. 16 —26. DOI.
10. 1145/2970276.2970361.

E-F ILP 70 GA gy B 1] 2% &0 i i A Bl L S HEF R

gE2 2 R

(" B K AR,

S5HE

%% 710121)

(P Emaeupl KPS A S HBR R IEE ELBE, % 710121)
AT T 0 18 & Zm o XA BIAE R HE S P AR, 3R T AR LR S R kAR 4 /\aﬁ,& KA

HOE R R TR BEAX, EFFN ﬁ;}%%ﬁiéﬁéﬁmzﬂikﬂmﬁiﬂﬂﬂ 25 ey mlX A & R g ARERR
B SRR B 4B AR BEAT 40 A Vxﬁzl?y'—ﬁiﬁmﬁ?ﬁ/?k}iﬁ“ G, AR IR AE R 3l X R) 4R 34T
He . mIES Aéé;#%éﬁ%;&%ﬁlﬁ BT E 5, w\iﬁwﬁw@b@%«ﬂix B 18] 29 R 5 A 25% F= T5% .
Tk R R RS RN SR ﬁfk PEIF A T R AR AR k. i kR B TR LI
Bl HeAR =1)2) 5K R A
KR - X R) K S HE T
B4 %S TP311.53

B HCE AR 5 HAE ks i 24 R

