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Abstract: A new real and complex-valued hybrid time-delay
neural network ( TDNN)
linearizing the broad-band power amplifier (BPA). The neural

is proposed for modeling and

network includes the generalized memory effect of input
signals, complex-valued input signals and the fractional order
thus, the
modeling accuracy is improved significantly. A comparative

of a complex-valued input signal module, and,
study of the normalized mean square error (NMSE) of the real
and complex-valued hybrid TDNN for different
constants, memory depths, node numbers, and order numbers
is studied so as to establish an optimal TDNN as an effective

spread

baseband model, suitable for modeling strong nonlinearity of
the BPA. A 51-dBm BPA with a 25-MHz bandwidth mixed
test signal is used to verify the effectiveness of the proposed
model. Compared with the memory polynomial (MP) model
and the real-valued TDNN,
hybrid TDNN is highly effective, leading to an improvement
of 5 dB in the NMSE. In addition, the real and complex-
valued hybrid TDNN has an improvement of 0. 6 dB over the
generalized MP model in the NMSE. Also, it has better
numerical stability. Moreover, the proposed TDNN presents a

the real and complex-valued

significant improvement over the real-valued TDNN and the
MP models in suppressing out-of-band spectral regrowth.
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ecently, the neural network (NN) models have at-
Rtracted attention from researchers working on power
amplifier (PA) modeling due to their successful imple-
mentation in pattern recognition, signal processing, sys-
tem identification, and control'™.
pologies have been proposed. For example, the complex-

Different neural to-
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valued single-input single-output feed-forward NN™' and
real-valued double-input double-output NN'*! are the most
basic structures. These NNs have been found effective for
forward modeling of static nonlinear PAs.
these models do not consider the memory effects of PAs,
especially when the PAs have a strong memory effect,
these models fall short of expectation.

Considering the memory effect, three dynamic neural

However,

structures have been proposed in the NN literature, name-
ly, the recurrent neural network'”, the complex-valued
time-delay neural network (TDNN) ' and the real-valued
focused time-delay neural network'”. The recurrent neu-
ral network employs the feed-forward and the feedback
complex-valued time-delay line, but the feedback time-
delay line significantly affects model robustness. Present
and past complex signals are used to train the time-delay
neural network, but they cannot be used to describe the
strongly nonlinearity of Doherty PA. The memory effect
is considered in real-valued TDNN, and the present and
past inputs of the real-valued TDNN are real-valued.
However, the real-valued TDNN has several hidden layers,
and it is a back-propagation NN that demands a lengthy
training time.

In this paper, a real and complex-valued hybrid TDNN
is proposed, simply called hybrid TDNN. In this hybrid
NN, the generalized memory effect’™ of input signals is
considered. The inputs to the hybrid TDNN are complex-
valued signals and the fractional order of the complex-val-
ued signal module. The hybrid TDNN is based on the ra-
dial basis function (RBF), so it has only one hidden lay-
er, which greatly reduces computational complexity and
training time. Moreover, it has better modeling and lin-
earization capability.

1 Nonlinear Model of Hybrid TDNN

PA modeling calls for a model that can extract mag-
nitude and phase information from modulated complex
waveforms. To address cumbersome calculations and de-
scribe static nonlinear PAs, the real-valued feed-forward
neural network'” is shown in Fig. 1, which takes advan-
tage of the in-phase (I) and quadrature (Q) components
of modulated waveforms in the baseband, thereby saving
pre- and post-processing activities, and it can be used as a
common feed-forward NN with two inputs and two out-
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puts. Although this topology has been found to be effec-
tive for forward modeling of static nonlinear PAs, it falls
short of expectation when the PA shows memory effect.
Usually, the memory effect of the PA cannot be ig-
nored'""", especially in the case of wideband signals.

Fig.1 Real-valued NN topologies for RF PA modeling

Considering the memory effect, two dynamic neural
structures have been proposed in NN literature. First, the
complex-valued TDNN'® that utilizes feed-forward signal
processing is shown in Fig. 2(a). It uses complex base-
band signals as the model input and output. The second
technique is a real-valued focused TDNN'” that relies on
the fact that the amplifier output depends on present, as
well as previous input values owing to memory effect in
the system. Thus, this technique extracts information
from present and past inputs. To reduce the number of
hidden layers of the real-valued TDNN, an real-valued
TDNN-based RBF is used'”, namely, real-valued time-
delay RBF NN, and its topology is shown in Fig. 2(b).
However, this scheme does not consider the generalized
memory effect and the module of the baseband signal.
Therefore, it cannot accurately describe the strong nonlin-
earities of power amplifiers.

Hider layer

Input layer

Input layer
1,
Output
7 layer
z! L, (m)
0, (n)
P Q,u(m)
2]

(b)
Fig.2 Two different topology of NN models. (a) Topology of
complex-valued TDNN model. (b) Topology of real-valued time delay
RBF NN

To address this issue, a new topology of the RBF NN,
the real and complex-hybrid TDNN is proposed in this pa-
per.
the complex-valued inputs are complex baseband data and
the real-valued inputs are fractional orders of the com-
plex-valued signal module.
memory effect is considered in the model; that is, the
output of the complex baseband data depends on leading
time, aligned time and past time values.

It contains complex and real-valued inputs, where

Moreover, the generalized

1.1 Topology of hybrid TDNN nonlinear model

According to Ref. [8], the generalized memory poly-
nomial (GMP) model and the traditional memory polyno-
mial (MP) model are given. These models originate from
the Volterra series, and the outputs of these models de-
pend on the complex baseband signal and module value of
the complex value signal. They are given as

y(n) = Z Zakl'x(n_l) ‘x(n—l) ‘k+
2 i ibkllnx(”_l) | x(n =1 -m) |* +

k=1 1=0 m=

K., L-1 M

S S Y epxtn =D lxn—1+m |1 (1)

1=0 m
K

1 o-1

y(n) =Y

k=0 ¢=0

bx(n—-q) |x(n-q) " (2)
where y(n) depends on the present and past time complex
baseband signals x(n - 1), [0,1,2,...]; the order of
the present and the past time complex baseband signal
module values is \x(n ) Kle [0,1,2,...]; and the
order of leading time complex baseband signal module
values is |x(n+10) |, 1e[1,2,...].

The NN model is known as a black box, which can be
described by the function f(x), the input and output of
which are selected to describe the nonlinearity of the PA.
Based on the above mentioned characteristics of the GMP
and the MP model, the input data of an NN model in-
cludes present and past time complex baseband signals,
the order of the present and the past time complex base-
band signal module values, and the order of leading time
complex baseband signal module values.

For the RBF NN model, the basis function is a Gaussi-
an function'”, and the input data of the model is used in
Therefore, if x (n - 1),

¥ and \ x(n+1) \ " are used as the inputs to
k

the Gaussian function.
\ x(n-=1)
the RBF NN model, x(n-1), x(n-=102, \ x(n-=1)
|x(n=0 |, and |x(n+0 |" and |x(n+0 | are
used in the Gaussian function. In Ref. [13], the odd-or-
der nonlinearity is the main nonlinearity of the PA. In
Ref. [8], the fractional order and odd-order nonlinearity

are simultaneously considered to increase modeling accu-
racy. Therefore, if the fractional order of data is used as
the input to the RBF NN model, the fractional order and
the square of the fractional order of the input data are
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used in the Gaussian function. Moreover, the fractional
order and the odd-order are simultaneously considered.
the hybrid
TDNN model is proposed in this paper. It includes the
complex baseband signal and the fractional order of the
complex baseband signal. Fig.3 shows the block diagram
of the real and complex-valued hybrid TDNN model. The
input and the output of the hybrid TDNN model are x(n
+ M) and y(n), respectively.

Therefore, based on prior knowledge,

x(n)

. x(n—M)
x(r+M)F
i x(r+M=1)f
: x(n—M,)

(M)
i (M=)

Input
layer

(M, IF
1

. K+1

Fig.3 Block diagram of the real and complex-valued hybrid
TDNN model

Thus, the required knowledge of future input signals is
obtained for modeling and predistortion. The only cost
for this modeling and predistortion scheme is that there is
additional time-delay corresponding to several sampling
lengths.

At any moment in the training sequence, the real and
complex-valued hybrid TDNN model is presented with the

K
input vectors of M, +1 + KM + 2 (M,,, +1) -by-1, in-
k=1

cluding leading, aligned and past inputs. The input vec-
tors of the model are given below:

X(n) ={x(n),x(n-1),...x(n=M,), ..., | x(n+M) l,...,
x(n+ 1) 5 x(m)| s x(n =M ) x| K L
[x(n+D) |5 [xm), o [ x(n-M ) | *3T (3)
where |x(n+M) |*, ..., | x(n+1) |* denote the frac-

tional order of the amplitude of the leading input complex
baseband data; x(n) is the alignment time input value;
and x(n—-1), ..., x(n-M,) are the past time values.

\ x(n) \ *and \ x(n-M,,)) \ * are the fractional of the
input training baseband data module values for the present
and the past times, respectively.

k=k-0.5, ke[0,1,...,K], K=K-0.5

When K =1, the input vectors are given below:

X(n) = {x(n),x(n=1),...x(n=M,), | x(n+M) |*°, ...,
[x(n+1) [, [x(n) [, [x(n=M) [}
(4)
When K =2, the input vectors are given below:
X(n) = {x(n),x(n-1),...,x(n-M,), | x(n+M) |*°, ...,
x(n+ 1), (), o [ x(n =My | ™ [x(n by [ 2,
[x(n+1) [, [x(n) |7, [x(n-My) [} (5)

where M is the leading memory depth of the proposed
model, and M,, M,, .... M, are the aligned memory
depths of the proposed model. From Egs. (4) and (5),

K
M, +1+KM+ 2 (M,,, +1) is the dimension of the in-
k=1

put vectors X(n), so the dimension of X(n) increases
rapidly as the order K and the leading memory depth M
increase.

For NN models, especially those based on RBF, the
larger the input vector dimension M, + 1 + KM +

K
Y (M,,, +1) , the slower the convergence of the mod-
k=1

el. Therefore, the order K and leading memory depth M
need to be chosen carefully for achieving reasonable
tradeoff between the modeling accuracy and convergence.
These will be confirmed through experiments.

The output of the model is complex baseband data of
the output training signal. At any moment in the training
sequence, the output vector is a 1-by-1 vector.

Y(n)=y(n) (6)

The dynamic input-output relationship of the real and
complex-valued hybrid TDNN shown in Fig.3 is de-
scribed as follows:

y(n) = f(X(n)) (7)
where f is the RBF. Therefore, Eq. (7) can be rewritten
as

y(n) =w, + iwai (8)

where L is the length of hidden nodes, and B, is given as

A

Y (X(a,n) = Ci(a))’
B, = exp| - 7 (9)

where X(a,n) is the a-th element of X(n), and C,(a)

K
is the center of the RBF. A = M, +1 + KM + Y (M,,,
k=1

+1) . B is a constant given as and s is a

K
J/=0.5"
spread constant in the interval [0.8, 2.5]. This can be
referenced from the help file of the newrb function in
Mathworks’ Matlab.
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1.2 Measurement setup

The nonlinearity characterization test platform for pow-
er amplifiers is shown in Fig. 4. The test signals were
synthesized using the Agilent advanced design system
(ADS) on a PC. These test signals were downloaded to
the vector signal generator ( Agilent N5182A) from the
PC and then modulated and up-converted to RF signals in
the vector signal generator. Immediately thereafter, the
RF signal is fed to the PA. The output of the PA is cou-
pled to a spectrum analyzer ( Agilent PSA E4445A),
which includes a digitizer. The analog-to-digital converter
(ADC) in the digitizer board has 12 bit and can provide
a dynamic range of more than 70 dB. The output RF sig-
nal of the PA is down-converted to a low IF signal and
digitized in the spectrum analyzer. Finally, the digital
signals are sent to the vector signal analyzer software
(VSA, Agilent 89601A) in the PC, where the equivalent
complex baseband data of the input and the output of the
PA are captured and processed in the VSA software.
These complex baseband data are used to train the models
or pre-distorters.

Ee PSA E4445A
reference
- H
A

10 MHz
reference
output
|
|
|
|
|
|
|
|
L

VSG 5182B

Power supply | == -

Fig.4 Block diagram of nonlinearity characterization test plat-
form for power amplifiers

A 51 dBm peak power BPA is used in this work for
modeling and linearizing validation measurement. It is a
three-stage BPA applied to LTE wireless communication
transmitters in the 1 880 to 1 980 MHz frequency band.

A 25-MHz mixed signal with a center frequency of
1 930 MHz is used as the test signal. It contains two car-
riers, namely, the 1001-CDMA2000 signal and the 1-
WCDMA signal. The center frequencies of these two car-
riers are 1 920 and 1 940 MHz. Its peak to the average
power ratio (PAPR) is 8.5. The AM/AM and AM/PM
characteristics of the BPA with an average input power of
—7.5 dBm is shown in Fig. 5. The corresponding aver-
age output power of the BPA is 42.3; the gain of BPA is
49.8 dB, and the BPA shows strong static nonlinearity
and memory effect.
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Fig.5 Measured AM/AM and AM/PM characteristics of BPA
under application of —-7.5 dBm test signals

1.3 Training and performance assessment of hybrid
TDNN-based nonlinear model

The training of the real and complex-valued hybrid
TDNN model involves two stages: hidden layer training
and output layer training. In the first stage, the orthogo-
nal least square (OLS) training scheme is employed as a
forward regression procedure to determine the centers of
the model (C,(m) ). The number of regression steps is
equal to the number of hidden nodes. Then, the weight
w, of the model can be obtained through singular value
decomposition. After the centers and the weight of the
hybrid TDNN are determined, the model is thus ob-
tained.

Three thousand (3k) sample data from the mixed sig-
nal measurements was used to train the real and complex-
valued hybrid TDNN. Another ten thousand (10k) sam-
ple data was used to test the training model.

The leading memory depth M, the spread constant s,
and the maximum order K of the real and complex-valued
hybrid TDNN model were selected by a comparative anal-
ysis procedure, which is a NMSE-based optimization
process. The NMSEs of the model were compared for
different leading memory depths M from O to 2 in steps of
1, spread constants s from 0.4 to 2.5 in steps of 0. 1,
and K from 1 to 3 in steps of 1. To ensure that the real
and complex-valued hybrid TDNN uses the same number
of input data for the same K, the aligned memory depth
M =M =M., and M, + M =3 are set up.

When the BPA with 51-dBm peak power is driven by a
25-MHz mixed signal with an average input power of
—7.5 dBm, the NMSE performance in the comparative
analysis is shown in Figs. 6(a), (b) and (c) for 260
nodes. Here, s varies from 0.4 to 2.5 in steps of 0. 1;
and the leading memory depth is M =0, 1, and 2. The
NMSE performance of the real and complex-valued hy-
brid TDNN model is compared by different K and the
same leading memory depth M.

From Figs.6(a), (b) and (c), the higher the order
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NMSE/dB

NMSE/dB

NMSE/dB

s
(c)

Fig. 6 The NMSE performance of real and complex-valued

hybrid TDNN model for (a) M=0, (b) M=1, (¢) M=2

K of the real and complex-valued hybrid TDNN model,
the higher the modeling accuracy for different s and lead-
ing memory depths M. When K =3, the NMSE of the re-
al and complex-valued hybrid TDNN model is the mini-
mum compared with those when K =1 and 2. However,
it is 0.1 dB better, and it converges slower than that
when K =2. Therefore, in this study, we select K =2.

For the same order K of the real and complex-valued
hybrid TDNN model, the leading memory depth M and s
have certain impacts on model accuracy. When the lead-
ing memory depth M =1, the NMSE of the real and com-
plex-valued hybrid TDNN model has optimal performance
compared with those when M =0 and 2. This is because
the leading memory depth M and the aligned memory
depths M, = ---M, --- = M,,, are considered, and the
aligned memory depth is greater than the leading memory
depth. Meanwhile, the real and complex-valued hybrid
TDNN model has the same number of input data at M =
0, 1, and 2 for the same K and the same number of
nodes, so the real and complex-valued hybrid TDNN
model has the same computational complexity. Thus, we
select M =1.

From Fig.6(c), the spread constant of 0.8 is selected
for K =2 since this value results in optimal modeling ac-
curacy.

In summary, the real and complex-valued hybrid
TDNN model has optimal NMSE performance, computa-
tional complexity, and modeling accuracy for M =1, K =
2, and s =0. 8.

In order to determine the optimal number of hidden
nodes L in the proposed model and to demonstrate its
merits based on the above parameters, the above four
models, namely, real and complex-valued hybrid TDNN,
real-valued TDNN, real-valued NN and complex-valued
TDNN, are compared in terms of NMSE by varying the
number of nodes from 80 to 320 in steps of 60. The
NMSE performance of these four models is shown in Fig.
7, where Fig.7 corresponds to the input power of —-7.5
dBm. In the experiment, for the real-valued TDNN and
the complex-valued TDNN models, the memory depth
is 3.

=201
o ——o —0o—°
=251 -e-Complex-TDNN
—+—Real-TDNN

8 30t -a-RVNN

o -+~Hybrid TDNN

=

g =35
40

100 150 200 250 300 350
Nodes
Fig.7 Performances of different models in terms of NMSE

Meanwhile, the real and complex-valued hybrid TDNN
model shows significant improvement compared with the
real-valued TDNN, real-valued NN, and complex-valued
TDNN models in terms of modeling accuracy for BPA
nonlinearity with an average input power of —7.5 dBm.
Especially, for the strong nonlinearity of the BPA, the
NMSE of the real and complex-valued hybrid TDNN
model improves 5 dB compared to the real-valued TDNN
model for 200 nodes. Therefore, the optimal number of
nodes is set to be 200 to ensure that the real and complex-
valued hybrid TDNN and the real-valued TDNN models
have optimal modeling accuracy and computational com-
plexity. In conclusion, the real and complex-valued hy-
brid TDNN model has a greater advantage over other NN
models in modeling the memory effect and the static non-
linearity of the PA.

In order to further demonstrate the merits of the pro-
posed model based on the above parameters, three other
models, namely, GMP, MP, and rational function-based
(REM) model'™*' | were compared with the real and com-
plex-valued hybrid TDNN model in terms of NMSE and
degree of dispersion A. The degree of dispersion is used
to illustrate the degree of divergence of the model coeffi-



144 Hui Ming, Zhang Xingang, Zhang Meng, Yu Chao, and Zhu Xiaowei

cients, which is defined as the ratio of the maximum and
the minimum of the coefficient modulus.
The degree of dispersion is defined as follows:

_ max ( \B\)

“min( |B ) (10)

where B is the vector of the model coefficient.
When p is even, the REM model "*' can be written as

P

y(n) = z Eap'mx(n—m) | x(n —m)

p=0 m=0

S S b y(n) |x(n-m) |

=0 m=0

(11)

The NMSE values of three other models are compared
in Fig. 8 for the BPA with the mixed test signals described
in this work, where L, =L, =L, =4, M, =M, =1, and
K, =K,=K.,e[2,3,4,5,6,7] for GMP1, M =4 and
K-1e[2,3,4,5,7] for MP1, L, =L, =L. =5, M, =
M.,=1, and K, , =K, =K, € [2,3,4,5,6,7] for
GMP2, M=5and K-1€e[2,3,4,5,7] for MP2. For
the RFM model, M, =M, =4, and P, =P, [2,3,4,
5,6,7] is for REM1, My =M, =5, and P, =P, e [2,
3,4,5,6,7] is for RFM2. In the compromise selection
process between the NMSE and the number of coeffi-
cients, L, =L, =L . =4, M,=M_=1, and K, , =K, =
K, =4 are selected for the GMP model. M =5 and K =5
are selected for the MP model. However, My = M, =5
and P, = P, = 2 are selected for the RFM model. The re-
al and complex-valued hybrid TDNN model has 200
nodes, K=2, M =1, and s =1.5. The NMSE and the
degree of dispersion A of these models for these parame-
ters are compared in Tab. 1.

-32r 5 MPI; -+GMPI
—+MP2; —GMP2

-o-RFM1; —=-RFM2

NSME/dB
&
=

4
Order
Fig.8 The NMSE values of different models

From Tab. 1, we can easily conclude that the real and
complex-valued hybrid TDNN and the GMP models are
considerably better than the MP and the RFM models in
terms of modeling strong nonlinearity of power amplifiers
for broadband applications. At the same time, the NMSE
of the real and complex-valued hybrid TDNN model is
0.6 dB better than that of the GMP model, and also the
former has a lower degree of dispersion than the latter. At
the same time, the NMSE of the real and complex-valued
hybrid TDNN model is 5 dB better than that of the MP

and the RFM models, and its degree of dispersion is close
to that of the RFM model; the degree of dispersion of the
RFM model is smaller than those of the other models.

Tab.1 NMSE and degree of dispersion A of different models

Model NMSE/dB A
Hybrid TDNN -42.912°5 660.276 1
GMP -42.3672 51617
MP -38.746 5 8 082.5
RFM -37.9759 398.855 6

2 Measurement Results of Hybrid TDNN-Based
Digital Predistortion

In order to take real and complex-valued hybrid TDNN
predistorters into linearization applications, the input
baseband complex data of the predistorter is saved in the
PC as a text file. This baseband complex data is genera-
ted by the ADS in a given period of time, so that the lead
and the past inputs of the predistorter are known.

The real and complex-valued hybrid TDNN model is
used to design a digital predistorter. First, the output
baseband complex sample data is time-aligned and nor-
malized with the input baseband complex sample data.
Next, 3 000 output baseband sample data and 3 000 input
baseband sample data are used to train the reverse model
to extract the predistorter coefficients. Then, the input
baseband complex data is predistorted, and the predistort-
ed data of the predistorter is converted into the analog do-
main and up-converted into the respective given carrier
frequencies, and then finally fed to the PA. The predis-
torter is then implemented in Matlab, and predistorted
signals are used to linearize the BPA. This amounts to
linearization of the mixed predistorted signals at an input
power of —9 dBm, equal to about 1.5 dB of back-off for
the input power of —7.5 dBm.

Fig. 9 shows the power spectrum density (PSD) of the
BPA for various predistorters. Each graph shows the BPA
output spectrum with and without DPD correction. In
Fig. 9, the real and complex-valued hybrid TDNN and the
real-valued TDNN models have the above-mentioned op-
timal number of nodes. At the same time, in the case of
the real and complex-valued hybrid TDNN model, M =
1,K=2, M, =---M,---=M,,, =2, and s =0.8. The
memory depth of the real-valued TDNN model is 3. In
addition, the parameters of the GMP and the MP models
are the same as those used in Section 1. 3.

It is clear from Fig. 9 that the performance of the real
and complex-valued hybrid TDNN predistorter is signifi-
cantly better than that of the optimal real-valued TDNN
model and the MP model in terms of suppressing spectral
regrowth when the BPA has a strong memory effect and
static nonlinearity. In addition, the real and complex-
valued hybrid TDNN model and the GMP model have
similar linearization capabilities. However, the real and
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Fig.9 Comparison of output spectra for BPA linearized using
different digital predistorters. (a) Of real-valued TDNN and hybrid

TDNN; (b)Of MP, GMP and hybrid TDNN

complex-valued hybrid TDNN model has better numerical
stability.

From the above, the optimal NMSE, computational
complexity, and linearization capability of the real and
complex-valued hybrid TDNN model are determined by
the selection of the aligned memory depth, leading mem-
ory depth, spread constant, and model order.

3 Conclusion

In this paper, a real and complex-valued hybrid TDNN
model is proposed, which can learn and predict the
strongly dynamic nonlinearity of a BPA. In addition, a
predistortion technique based on the hybrid TDNN model
is presented for linearizing BPA.

Three other neural networks and three other polynomial
models are selected for comparison with the hybrid TDNN
model, namely, the real-valued TDNN, real-valued NN,
complex-valued TDNN, MP, RFM, and GMP. Through
the comparative study, the optimal numbers of nodes of
the hybrid TDNN and the real-valued TDNN are obtained
for a real BPA driven by a —7.5 dBm mixed signal. In-
deed, the optimal hybrid TDNN model leads to a nearly 5
dB improvement in the NMSE compared with the optimal
real-valued TDNN model. At the same time, compared
with the MP and GMP models, the optimal hybrid TDNN
model is highly effective, leading to an improvement of 5
dB and 1.4 dB in the NMSE, respectively.

The linearization capability of the hybrid TDNN predis-

torter has been validated for a real BPA excited by mixed
signals. The measurement results confirm that the optimal
hybrid TDNN model significantly improves the suppres-
sion of spectral regrowth than the optimal real-valued
TDNN and MP model in terms of the memory effect and
static nonlinearity. In addition, the hybrid TDNN and
GMP models
whereas the hybrid TDNN model has better numerical sta-
bility.

have similar linearization capabilities,
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& OWY O ORFR Ok B 4 & ke

(AdXFEREBAEELLRE, HF 211189)
ChIFt$rmms b F T30, & 473061)

FE R T — AP 9 5 AR IEAY 2 W 2, ) T AR A KA T R SR AR XAV 2 R % 8 A
1556 7 SRIL RO B AL NAZ 5 Fo SABL M NAZ T BAE 69 5 2R, B fo JL A ;uu'_%"kﬁ?m % H AL
Rb it AEAY 2 W KRR AR IR A 2 A A Aot 09 )3 — 4 7 ik £ (NMSE) # 47 7 b4k
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