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Abstract: A nonlinear explicit dynamic finite element
formulation based on the generalized beam theory ( GBT) is
proposed and developed to simulate the dynamic responses of
prismatic thin-walled steel members under transverse impulsive
Considering the rate strengthening and
softening effects on member impact behavior,
Cowper-Symonds model for constructional steels is utilized.
The element displacement field is built upon the superposition
of GBT cross-section deformation modes, so arbitrary
deformations such as cross-section distortions, local buckling
and warping shear can all be involved by the proposed model.
The amplitude function of each cross-section deformation
mode is approximated by the cubic non-uniform B-spline basis
functions. The Kirchhoff’s thin-plate assumption is utilized in
the construction of the bending related displacements. The
Green-Lagrange strain tensor and the second Piola-Kirchhoff
(PK2) stress tensor are employed to measure deformations and
stresses at any material point, where stresses are assumed to be
in plane-stress state. In order to verify the effectiveness of the
proposed GBT model,
impulsive loading of the thin-walled parts are given. The GBT
results are compared with those of the Ls-Dyna shell finite
element. It is shown that the proposed model and the shell
finite element analysis has equivalent accuracy in displacement
Moreover, the proposed model is much more
computationally efficient and structurally clearer than the shell
finite elements.
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ue to the great security demands, since the end of-
World War II, a growing need has arisen to inves-
tigate the behavior of thin-walled steel members under in-
tentional or accidental impulsive loads (e. g.
sions). In the 1950s, a series of experiments were imple-

explo-
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mented by Symonds et al. '™ to investigate the dynamic
plastic behavior of steel solid beams sustaining impulsive
loads. They studied the impacts of rate effect,
hardening and axial restraints on dynamic plastic behavior

strain

of beams, and a rigid-plastic analytic model was proposed
to predict the member permanent deformations.
phreys™ conducted blast tests on flat steel beams, and the
test results were compared with theoretical predictions
given by a rigid-plastic analysis. Based on a series of im-
pact tests on clamped aluminum beams, Menkes and
Opat"” established the three failure modes of metal solid

Hum-

beams under impulse (i.e., large inelastic deformations,
tensile tearing and transverse shear failures at the sup-
ports). In general, thin-walled members exhibit more
complex behavior under impulsive loading due to the lo-
cal wall deformations followed by member global respon-

. 16
ses. Wegener and Martin'®

studied the dynamic perform-
ance of simply supported hollow steel beams of the square
tube section, and a plastic analysis based model was pro-
posed to predict the beams’ global and local permanent
deformations. Bambach et al."”’ performed a series of
transverse impact tests on steel square hollow sections,
and severe local plastic deformations beneath the impactor
were observed for the non-compact hollow sections. Jama
et al. ™™ investigated the blast responses of square hollow
sections. The test results show that plastic deflections,
tensile tearing at the supports and local collapse of upper
flange are three fundamental deformation modes for the

sections under blast. Nassr et al. """

performed a series
of full-scale blast tests on W-sections. Most of the post-
blast beams and columns in their tests exhibited only
global deflections, and none of them exhibited local
buckling or fracture at any cross-section. Remennikov
and Uy'"! studied the near-field blast responses of tubular
steel columns infilled with or without concrete, and the
measurements with respect to the hollow sections showed
that each of them sustained large plastic flexural deforma-
tion and localized tearing failure of the upper and bottom
flanges at the mid-span.

Test results have revealed that thin-walled members un-
dergo localized deformation (e. g., cross-section distor-
tion) followed by global response generally as they are
subjected to impulsive loading. Although the traditional
rigid-plastic analysis and yield line mechanisms of the
cross-sections can be used to predict the impact response,
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they are only suitable for some simple problems. The
shell finite element analysis (SFEA) is suitable for prob-
lems covering complex material and geometrical nonlin-
earities; however, it is difficult for us to extract the key
factors which affect the impact behavior of members
based only on SFEA in general. The generalized beam
theory, an alternative to SFEA, can provide an insight in-
to the behavior of thin-walled prismatic members under
impact due to its intrinsic structural clarity.

GBT is generally used to perform elastic vibration and
buckling analyses of thin-walled prismatic members'” ™" .
Recently, it has been extended to simulate the linear and
nonlinear static behavior of thin-walled members and
frames with arbitrary cross-sections and is made of differ-
™ Rui et al. ™ proposed a doubly modal
GBT formulation for dynamic analysis of thin-walled
members; however, it is just a first-order model and only
suitable for linear elastic members. This research aims at
presenting a new nonlinear explicit dynamic model based
on the GBT for numerical simulations of the transient dy-
namic responses of thin-walled steel members under im-
pact. The numerical discretization scheme adopted herein
is similar to that in Ref. [21], which concerns the applica-
tion of GBT to fire simulations of restrained steel beams.

ent materials'

1 Constitutive Material Model

1.1 Thermo-visco-plastic constitutive relationship for
steel

The dynamic plastic behavior of steel at ambient and el-
evated temperatures exhibits the coupling of rate hardening
and thermal softening effects. Several efficient constitutive
material models have been developed to describe it, such
1”!, the Cowper-Symonds
model'! and the RK model™ . In this paper, the rate hard-
ening model proposed by Perzyna®" is utilized as follows:

as the Johnson-Cook mode

U:ao[1+(%)l/q] (1)

where o, denotes the flow stress concerning the material
quasi-static tensile loading; Cowper and Symonds'" sug-
gested that D =40.4 s ™' and ¢ =5 for mild steel; g, de-
notes the equivalent plastic strain rate. As g, exceeds
0.1 s™", the adiabatic temperature rising induced by the
conversion of material plastic work into heat must be
taken into account in analysis. This is also supported by
the numerical modeling of steel tubular beams under
1. ™' showed that the thermal softening
induced by the adiabatic temperature rising has small but
no negligible effect on beam blast behavior. To take the
thermal softening effect into account, we modify o, as a
function with respect to the material temperature 7, and
the formulation recommended by the Australian code
AS4100—1998"" is used, i.e.,

blast™'. Jama et a

Ty 0 C<T<215T
905 -T
690
where o, denotes the steel yield stress at the ambient
temperature, and the steel temperature-dependent Young’s

modulus reads"*”!

(2)

To=0r= 215 C < T<905 C

Ty

T
. B4 ooy tooy) 0 T <T=60 T
T4 690 (1-17/1000)

£, U= 600 T < T<1 000 C

(3)

where E, = E, as T =0 C. Moreover, the steel thermal

elongation recommended by EC3"™"

is adopted in this
work. It is noteworthy that the strain hardening effect is
not taken into account herein. To accomplish a geomet-
rical nonlinear analysis, the stress-strain relationship
should be transformed into the true stress-logarithmic

strain law, i.e.,

g, =In(l+¢&), o,=0(1 +¢) (4)

1.2 Integration scheme for the constitutive model

Constitutive modeling for steel are based on: 1) The
isotropic elastic behavior defined by generalized Hooke’s
law; 2) J,-plasticity with isotropic hardening and associ-
ated flow rule; 3) Additive decomposition of the strain
increments; and 4) Isotropic thermal deformations. In
general, to solve the set of nonlinear constitutive equa-
tions, an incremental integration procedure should be per-
formed. For a given strain increment, we need to update
the stress, the plastic strain, the plastic strain rate and the
temperature, so that the consistency condition can be
complied with (i.e., the stress remains on the yield sur-
face) on each quadrature point. Two kinds of integration
schemes (i.e., explicit and implicit schemes correspond-
ing to the forward Euler and backward Euler methods, re-
spectively) can be utilized to implement the updating pro-
cedure. Due to the deficiency of the explicit scheme in
preserving the consistency condition, an implicit scheme

28] -
™1 is used to solve

proposed by Zaera and Fernandez-Saez
the set of incremental equations in this work.

The implicit integration scheme consists of two steps.
For a given plastic loading, an elastic predictor for the
new stress-state is given first, and then, an iterative pro-
cedure, so called plastic return, is performed to project
the elastic predictor onto the revised yield surface. The

elastic predictor is

o =0, +D, - Ae

new

(5)

where D, denotes the stiffness matrix; o, is the previous
stresses; and Ag is the strain increments. The revised

yield surface can be given by
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where @, represents thc prev10u.s yield function; @ is n(5™ —6GAM,)SA
the updated yield function; o, is the updated stress vec- oT = (13)

tor which lies on the revised yield surface; AA is the plas-

tic multiplier; A & , 1s the equivalent plastic strain rate.
Based on the additive decomposition of strain increments,
o, 1s written as

new

oD
new _D

e

UHEW = O-ﬁ:,v - AA’DE °

- a; AT (7)

where a, denotes the thermal expansion coefficients, and

new

the adiabatic temperature increment is

N0 e, AA
AT =" (8)
Cp
where 7 is the Taylor-Quinney coefficient; o, is the

equivalent stress with respect to o,,,; C, is the specific
heat; p is the density. To solve Egs. (5) to (8), the
Newton-Raphson iterative procedure is used. Taking lin-
earization on Egs. (6) to (8) yields the next iterative

value of @__ as

new

(pk+l _ (pk + aQnew 6)\ + a¢new L&)\ + a¢new 8T+
new new a)\ . aép . At aT .
D\ yP,,
| (7) Aol | oo, (9)
30’new k aa'new aO-new k
The next iterative value of o, and 7 is
+ k a¢new
o =dk, —R(— DY +aT6T) (10)
aa-new k
] 9D\
6T:i(0ﬁw6/\ + (—) &rnch/\k) (11)
Cp 00, | Tk

-1

) D,; I is the
k

new

2
where R = (I+A/\"De . &

Jo,., 00,

new new

unit matrix; At is the time step. Although the explicit ex-

C.p

pre

where ¢}, denotes the equivalent stress of the elastic pre-
dictor; and G is the shear modulus. Substituting Egs.
(12) and (13) into Eq. (10), we can obtain the new it-

. k+1
erative stresses o

new *

1.3 Illustration of the constitutive model

To illustrate the implicit integration scheme, a dynamic
plastic loading for steel under plane stress is investigated
in this section. All the related material constants are listed
in Tab. 1. As mentioned before, for the mild steel, D =
40.4 s~' and ¢ =5 are recommended in general. Howev-
er, based on a series of Kolsky bar tests on mild steel,
Marais et al. "’ suggested that D =844 s ' and ¢ =2.207
recently, so two results are calculated herein. We assume
that the strain components varying with time are

. 2t
e(t) =le, &y yméTsmtl (14)

where ¢, ,¢,, and vy , denote the strain amplitudes corre-
sponding to the plane stress state. For a given strain am-
plitude vector {0.15, 0.1, 0.05} and a ¢, value of 0. 03,
the variations of stresses, equivalent plastic strain rate and
temperature are plotted in Fig. 1. Clearly, the case with
D=40.4 s and g =5 exhibits a much stronger rate
strengthening effect. Due to the lack of further experi-
mental investigations on the dynamic plastic behavior of
constructional steel, the widely accepted values of 40. 4

s~ and 5 are employed in the forthcoming analysis.

Tab.1 Material constants of the steel

E,/GPa 70/ o &/
. . . v
pressions of A and 8T can be obtained by the solution of 0 MPa T (kg -m) (J- (kg- ) 1)
Egs. (9 )7 to (11), more convenient expressions can be 200 0.3 280 0.9 7850 470
given by
— o (D=4045"g=5); __o(D=8445"4=2207)
- - 0(D=4045",4=5); - -0/ (D=8445",4=2.207)
-- 7 (D=40457,g=5); - -7(D=844 5".q=2.207)
1500 - 60 —D=40.4 s*',q:5 1000~
) b = T D=844 57 ¢q=2.207 —D=404 5" g=5
g 50 = = D=844 57,4=2.207
900 s 800k
g £ 40} ‘%
£ 300 - £ 600
S I Z 30} £
£ 300 g £ 400
72} = 20F &
-900 =R ol 200
E
-1500 1 h 1 1 1 | 3 0
0.02 0.04 0.06 0.08 0.10 0.12

Fig. 1

Time/s
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0.02 0.04 0.06 0.08 0.10 0.12
Time/s

(b)

0
0

1 1 1 1 1 ]
0.02 0.04 006 0.08 0.10 0.12
Time/s

(¢)

Results for the given harmonic loading. (a) Stress; (b) Equivalent plastic strain rate; (c) Adiabatic temperature rising
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2 Theoretical Model
2.1 Kinematic relationship and strains

The cross-section displacement field is built upon the
linear superposition of the GBT cross-section deformation
modes. The amplitude of each GBT mode varies along
the member length, and they are also the unknowns for
GBT analysis. The displacement formula is

U, u-2zw,
U={U ={v-zw_ (15)
U, w

z(w)
Fig.2 Definition of the GBT coordinates

where u#, v and w denote the membrane displacements
along the member longitudinal axis, arc-length coordinate
of the wall and normal direction of the wall, respectively

(see Fig.2). Moreover, the Kirchhoff’s thin plate as-
sumption is employed. The wall mid-surface displace-
ment is

D i, (5) by (x)
u k=1,N
{v}= PIRABENE (16)
I YA B INE)

where N denotes the number of GBT modes involved;
u, ,v, and w, are the cross-section displacement profiles of
the k-th GBT mode; ¢, represents the amplitude function
of the k-th GBT mode. Just as in the classic GBT, the
out-of-plane warping displacement u depends on ¢, ,,
which is due to the fact that no membrane shear strain is
assumed for the open cross-sections.

The Green-Lagrange strain tensor is employed to meas-
ure the deformation at any material point. First, we de-
rive the displacement gradients as

u.x - Zw,xx u.s - Zw,xs - W,x
H= v,X _ZW,XI v,S _ZW,SS _W,J (17)
w w 0

5 X S

and then based on the relationship between the Green-La-
grange strain tensor E and H, we obtain
E:%(H+HT+HT-H) (18)

For plane stress problems,only three components relat-
ed to wall in-plane deformations are required, i.e. ,

gxx :Ell = u,,\: + (Mz,,r + Vz,x + Wz,x)/z - Z(W,xx + u,xw,xx + V,xw,xs) +Z2(W2,xx + Wz,,n>/2

s

2 2 2 2 2 2
e,=E,=v +(u +v +w )2 -z(w +u w +v.w )+ (w +w )/2

F)/xs :E12 +E21 = (u,s + v,x + u,xu.x + V,.\V,s + W,xw,s _Z[ u,sw,xx + V,XW,SS + (u,x + v,x +2)W.x:1 +Zz(w,xx + W,:x)w,,\s)

where ¢ ,¢,,,7,, are the longitudinal extension strain, the
transverse extension strain and the in-plane shear strain,
respectively. Clearly, two parts, i.e. , membrane deform-
ation and bending related terms, compose the strain meas-
ures. In general, z” related to the terms in Eq. (19) is ig-
nored, which has no effect on the model accuracy"®"’.
GBT cross-section analysis ™", the first step for a GBT
analysis, yields the cross-section deformation modes. The
retrieved GBT modes depend on the cross-section discreti-
zation scheme. As shown in Fig. 2, three translational
displacements (u, v, w) combined with a rotational dis-
placement along the x axis are assigned to each node on
cross-section, and then the interpolation of the node dis-
placements approximates the cross-section displacement
field. A set of unconstraint or admissible cross-section

deformation modes should be calculated first™"™"', and
then a generalized orthogonalization procedure is per-

formed to obtain the GBT modes.

(19)
2.2 Cubic B-splines

Since the out-of-plane warping displacement depends
on the derivative of the amplitude function ( see Eq.
(16) ), the interpolation function of ¢, must possess the
first-order continuity at the nodes between two adjacent
elements. The Hermite polynomial interpolations are used
in general' ™" | but we prefer to use the cubic B-splines,
which is favorable for enforcing even the second-order
continuity , to approximate ¢,. Based on the Cox-de Boor
recursion formulation" ™’ , for the B-splines, a knot vec-
tor should be defined first and it is expressed as

{,[,: {a,,az,... ’am+7} =

{xl’xl’xlv'xl’x2"" X x X

m+1 %

(20)

9‘xm "xm+l Sm+1 9 m+1

where both the components x, and x,,,, are repeated four

m+
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times, so we call ¥ as an open knot vector, which im-
plies that the cubic B-splines built upon ¥ are interpolato-
ry at the two boundary knots. Starting with piecewise
constants, the basis functions are obtained by

o, =x<a,,

1
0
= :O 21
& {0 otherwise P (2D
D X—a p — (&2 +p+ - X p —
E= —_ E T L p >0 (22)
k+p k k+p+1 k+1

where superscript p represents the polynomial order, and
subscript k denotes the knot index. Clearly, m + 3 cubic
B-spline basis functions can be computed by the recursive
procedure. Moreover, the r-th order derivative of the ba-
sis function is

)

- -1
dx" o, —o dx’

dr—l p-1 dr—] p-1
é:k _ )4 §k+l (23)

r—1
Qpipir ~ Ogyy dx

Any cubic spline function f defined on the interval [ x, ,
X, ., ] can be expressed as

3 3 3 3
f(x) :é:ij +§_/’+]Bj+l +&5.20j42 +§,‘+3,3,'+3

where 3 represents the undetermined coefficient, and sub-

(24)

script j implies that point x lies in the j-th coordinate in-
terval.

2.3 Weak-form of the dynamic equations

Provided that a prismatic member is subdivided into n
elements along its length, the wall mid-surface displace-
ments (see Eq. (16)) for the r-th element can be ap-
proximated by

fu,v,wl"=N_(x,s) -i]r (25)

where the element generalized displacement vector is

1 2 N 1 2 N 1 2
U, =00, 0, 1@ 3@t 2 s Prit s @ria s @rin s s
(P]rv+2’¢:+3 ’¢f+3"”’¢lr\]+3%-r (26)

where index N denotes the total number of cross-section
deformation modes involved, and ¢’ represents the weight

1
N
B =3 .

U’:‘ : ( BHJ ux

where U” obtained from the previous iteration is substitu-
ted into Eq. (32) for the calculation of B™" at each time
step, and the gradient vectors in Egs. (30) to (32) are

- T -

BMX

BT

Bf a/ax o/as 0 0 0 0 4"
B? =[ 0 0 o/ox 9/as O 0

» 0 0 0 0 9/9x 9/ds
BW)C

BT

UT : (BN.K ° BEX +B\’X * B}:\ +Bw,\ : BT )
UT ° (Bus ° BI.S +Bvs ° B}; +Bws ° B—:A)
-B. +B, - B +B,

of £ with respect to the j-th cross-section deformation
modes (i=r, r+1, r+2, r+3;j=1,2,--- ,N). The
shape function can be expressed as

w, 0 @, O - @y, O
N=[0 % 0 ¥, 0 v,
0 w, 0 w, - 0 w,

(w, W, W, W._] (27)

where the first matrix refers to displacement profiles of
GBT cross-section deformation modes, and the sub-ma-
trix W,(j=r, r+1, r+2, r+3) concerning the ampli-
tude of the j-th GBT mode is written as

_ 13\ 0 0 A
& 0 0
0 &, 0
W=l0 ¢ 0 (28)
&
Lo 0 gl

Then the kinematic relationship (see Eq. (15)) can be
rewritten as

0 0 9/0x

U=|N, —z[O 0 a/as] “N, |-U ~ (29)
0 0 0
Therefore, we have
e=le,.e.y,) =(B"+B™) - U, (30)
where the linear strain matrix reads
BT
B =| B! (31)
B, +B,
and the nonlinear one is
(32)
: B:[’;' +BV.\’ ° B’\TA +BW’X ° BVTVX +BW’.\’ ° sz)
0 0 9/0x
N,—z[O 0 a/as] - N, (33)
0 0 0

Based on Eq. (30), we can derive the variation of

strain components with respect to U, as

Se=(B"+2B") - 85U, (34)

The equation of motion for an explicit transient dynam-
ic analysis can be given by
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M-U+C-U+F"=F" (35)

where M is the member mass matrix; C is the damping
matrix; F™™ is the equivalent member internal force vec-
tor; F™' is the equivalent external force vector. For an
impulsive response analysis, the damping effect can be
ignored in general since the energy dissipation caused by
the plastic deformation is significantly greater than that
dissipated by damping.
The mass matrix for the r-th element is

0 0 o/ox p 0 0
M,=fv N,—z[o 0 a/as|* N, -[0 o 0]-
' 00 0 00 p
0 0 9/0x
N,—z[o 0 a/ax|- N, |av (36)
00 0

where the domain of integration V, denotes the overall
volume of the r-th element.

Based on the principle of virtual work, the equivalent
internal force vector for the r-th element can be given by

F' = [ (B +2B™)" - |0, 0,7, 17dV (37)
v,

and the element equivalent external force vector can be
given by
F = fNE - qdA (38)
0,
where the external excitation ¢ acts on the wall mid-sur-
face of the domain (2,.

Assembling the derived element equivalent internal
force vector, the external force vector and the mass ma-
trix of each element, we can obtain their global counter-
parts (F™, F* and M) for the overall member. Please
note that the plane stress state is assumed herein (i. e. ,
o,=0,7,=0,7,=0).

The classic central differencing scheme is utilized to
perform the explicit time integration procedure. Assuming

that one has obtained the acceleration U,, velocity U,
and displacement U, at the moment #,, the velocity

U,.,, at time station k +1/2 is

(_]k+1/2:l_]k+(tk+l/2_tk) : l_]k (39)
The displacement U ,.1at next time station is
i]k+l :i]k +(f = 1) - l_]k+l/2 (40)

After this, we need to update the member geometric
and the stress state on each quadrature point. Additional-
ly, the acceleration at time station k + 1 can be solved by
Eq. (35). And then the next incremental step can contin-

ue on. Due to the conditional stability of the explicit inte-
gration scheme, the time step size should be selected
small enough to capture the response frequencies and oth-
er nonlinear effects. The time incremental size enforcing
the convergence for an explicit dynamic integration
scheme depends on the largest eigenvalue of the dynamic
equilibrium eigen-system, which can be calculated by the
GBT elastic vibration analysis. However, the Courant-
Friedrichs-Lewy condition, a more convenient guideline,
is sufficient for estimating it.

To alleviate the shear locking which leads to over-stiff
results for member deformations, a selective reduced inte-
gration scheme™’ is employed, i.e. , the stretching and
bending related terms are calculated by the full integration
scheme, but the shear deformation related terms are com-
puted by the reduced integration method.

3 Illustrative Examples

This section aims to show the potential and validation
of the proposed GBT formulation as it is used to simulate
the impulsive response of thin-walled steel members. The
developed GBT code was implemented through FOR-
TRAN programming and run on a desktop PC with a
3.2 GHz Xeon CPU and 2GB RAM. Three test cases are
given, and they concern three thin-walled steel members
with different cross-sections and boundary constraints sub-
jected to transverse triangle impulses. The member dis-
placement and stress solutions obtained from the GBT an-
alyses are compared with their SFEA counterparts. Due to
the modal nature of GBT, the solution concerning the
contribution of GBT modes to deformed member configu-
ration is involved.

3.1 Example I

Fig. 3 plots a fixed steel tubular beam subjected to a
distributed triangle impulse on its top flange. The mass
density, elastic modulus, Poisson’s ratio and yield stress
at ambient temperature of the beam are 7 850 kg/m’, 210
GPa, 0.3 and 350 MPa, respectively, and the other ma-
terial constants concerning the strain rate effect and the
adiabatic temperature rising are identical to those used in
Section 2. For the proposed GBT model, the cross-sec-
tion discretization involves ten uniform sub-walls per
flange and ten uniform sub-walls per web, which leads to
120 deformation modes. Concerning the longitudinal dis-
cretization, 46 non-uniform beam elements are used, spe-
cifically, eight uniform elements for x <160 mm, thirty
uniform elements for 160 < x <2840 mm, and eight uni-
form elements for 2840 < x <3000 mm. Therefore, the
discretization leads to a total of 17 640 degrees of freedom
(DOFs), only 12.21% of the number required by its
counterpart, a finite element model built upon the 4-node
shell elements of the Belytchko-Tsay formulation type
with roughly uniform mesh size (144 480 DOFs).
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Fig.3 Fixed steel SHS beam subjected to an impulsive load.

(a) Overall view of the beam; ( b) Cross-section dimensions;

(¢) Pressure vs. time curve

Although all of the 120 GBT cross-section deformation
modes are included into the GBT analysis, only a few of
them, which are depicted in Fig. 4, play significant roles
in the simulation of beam response. The contribution of
each GBT mode to the deformed configuration of the
beam is quantified by modal participation factor P, as'*’

) | ey lax

k;NL\%\dx

where the beam length L is the domain of the integration.

P, (41)

Mode 6

Mode 45»

-

Mode 42

Mode 47

Fig. 5 plots the modal participation diagram of the
beam deformation under impact, where the width of each
color filled strip represents the corresponding participation
of the indicated mode. It shows that the four local plate
modes 6-9 contribute mostly to the beam configuration at
the initial loading, and then their contributions are gradu-
ally surpassed by that of the major-axis bending ( mode
2). After a large increase of the beam global deflection,
the contribution of the longitudinal cross-section extension
(mode 1) begins to rise up due to the so-called catenary
action. Generally, the impact behavior of a SHS beam
exhibits the cross-section distortion or buckling followed
by the global deformation (e. g. , bending) , and the two
kinds of deformations can be considered to be uncoupled
»31  Clearly, those are also confirmed by
present GBT analysis. Due to the increasing participation

and sequential’

of major-axis bending, the associated global shear mode
42 prevails in all the shear modes. Moreover, to account
for the effects of shear lag, the flange warping shear
modes 45 and 47 are also important participators. Con-
cerning the transverse extension modes, they account for
the Poisson’s effects and cannot be excluded in analysis
though their participation is relatively small (see Fig.5).
For example, mode 81 describes the transverse deforma-
tions of top- and lower-flanges during the major-axis ben-
ding, and its contribution grows up along with the in-
crease of beam deflection.

Mode 81

Mode 83 Mode 84

Fig.4 Most relevant cross-section deformation modes participating in the impulsive response of the SHS beam

Fig. 6 shows the displacement results obtained from the
proposed model and the corresponding SFEA | where the
mid-span vertical displacements of the top flange 5, and
the bottom flange §,, as shown in Fig. 3, are selected to
accomplish the comparison. It is clear that the two dis-
placement-time curves referring to §, are virtually coinci-
dent (see Fig.6(a) ). Although the curves with respect
to (8, —8,) exhibit some discrepancies ( see Fig.6(b) ),
especially when time exceeds 3 ms, the mean absolute er-
ror is only 0. 68 mm. Moreover, Fig.6(b) shows the lo-
cal deformation response completes at about 0.8 ms, and

the global deformation response prevails after 0. 8 ms,
which is also supported by the modal result. Fig.5 shows
that the participation factor of mode 2 exceeds 50% at
0.8 ms.

Fig. 7 concerns the comparison of three-dimensional
contours of the wall mid-surface Mises stresses and the
deformed beam configurations at 3 and 7 ms after the im-
pact loading. Once again, a good resemblance between
the the GBT result and the SFEA result can be observed.
The Mises stress distributions show that the plastic hinges
emerge at the two supports where the mixed loading of



244

Duan Liping and Zhao Jincheng

Modes 6,7,8,9 Modes 42,4547 Modes 81,83.84 Others
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Fig.5 GBT modal participation diagram regarding the impact
response of the SHS beam
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(b)
Fig. 6 Displacement responses predicted by present GBT
analysis and SFEA. (a) Change of 8, over the time; (b) Difference

between the top and bottom flange deflections over the time

the global axial extension, the major-axis bending and the
shear deformation occurs.

3.2 Example I

Fig. 8 plots a cantilever lipped-C beam subjected to a
distributed triangle impulse on its top flange. All the ma-
terial constants adopted are the same as those used in the
previous section. For present GBT analysis, the cross-
section discretization involves ten uniform sub-walls per
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576.471
658.321
740.146
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/ 321.78
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Stress/MPa:
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Stress/MPa:
5.75
96.06
174.53
333.15
435.77
462.21
486.40
497.54
515.95
537.72
580.45
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(d)
Fig.7  Deformed configurations and 3D distributions of the
mid-surface Von-Mises stress of the fixed SHS beam predicted
by SFEA and present GBT analysis. (a) SFEA result when ¢ =3
ms; (b) GBT result when 1 =3 ms; (c) SFEA result when 7 =7 ms;
(d) GBT result when =7 ms

flange, twenty uniform sub-walls per web and two uni-
form sub-walls per lip, which leads to 135 deformation
modes. Moreover, the beam length is discretized by thir-
ty non-uniform elements, where twenty of them with the
equal length of 20 mm are used for the beam segment
nearby the fixed end (x<<400 mm) , and the other ten are
used for the left beam segment (x > 400 mm), which
leads to a total of 13 365 DOFs. The corresponding finite
element model based on 4-node shell-163 elements has
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roughly uniform mesh discretization, and the DOFs
amount to 118 188. Note that the DOF number of the
proposed GBT model is only 11.31% of that required by
the SFEA counterpart.

q)
sHHHHHHHHHHHH¢E
f’x 1000 mm :

(a)

q(0)

oM

£ g a0

= =

= « 0.3 MPa
(S|
60 mm |

t=t=t =1 mm 0 ST TSI
(b) (¢)
Fig.8  Lipped-C cantilever beam subjected to an impulsive

load. (a) Overall view of the beam; (b) Cross-section dimensions;
(¢) Pressure vs. time curve

Fig. 9 plots the cross-section deformation modes which
contribute to the beam impulsive response mostly, and

Fig. 10 plots the participation diagram of the most rele-
vant GBT modes for the beam under impact. As the load-
ing progresses, the beam undergoes a severe local deflec-
tion of top flange initially, which is described by the local
plate modes 7-10, and then the cross-section distortion
prevails, where we can find that the joint participation of
the two distortional modes 5 and 6 experiences a rapid in-
crease and reaches its maximum value of 66. 14% at
0.815 ms. Concerning the global response, it is clear
that the off-shear-center external loading can induce the
flexural-torsional deformation of the beam ( modes 2 and
4), but we find the minor-axis bending (mode 3) is also
one of the important participators ( see Fig. 10). This is
mainly due to the cross-section distortion which leads to
the change of flexural behavior of the beam. Due to the
growing contributions of the three rigid-body global

modes 2-4, it is visible that the contributions of their as-

sociated warping shear modes 52-54 increase as well.
Concerning the contributions of transverse extension
modes 100-102 play significant roles throughout
the loading. The large local deflections of the top flange
and web lead to the significant increase of membrane
strains in top flange and web, and modes 100-102 mainly
account for the Von Kdrman nonlinearity.

modes,

Model  Mode2  Mode3  Mode4  Mode5s

Mode v6

Mode7  Mode 8 Mode9  Mode 10

Mode 53 Mode 57

Mode 52 Mode 54 Mode 58
Fig.9
100 Mode 10 Modes 52,53,54,57,58 Modes 1,4

Others

-Mode
Cross-sectlon antlsymmetrlcal

'stortlon(Mode 6)

Cross-section symmetrical
distortion(Mode 5)

Modal participation factor/%

0 0.5 1.0 1.5 2.0 2.5
Time/ms

Fig.10 GBT modal participation diagram for lipped C-beam

Mode 100 Mode 101  Mode 102  Mode 103  Mode 104

Most relevant cross-section deformation modes taking part in the impulsive response of the lipped C-beam

Fig. 11 shows the comparison of the horizontal and
vertical displacements of the top flange-web corner at the
cantilever tip between the proposed GBT and the SFEA.
Although the the displacement predictions by GBT and
SFEA follow the same general trend, and also agree well
each other at the beginning, there are considerable dis-
crepancies after a large deformation, which stem from
membrane locking occurring in the web. As shown in
Fig. 12, the mid-surface Mises stress distributions pre-
dicted by proposed GBT analysis display that the ben-
ding deformations are accompanied by slight parasitic
membrane deformations in the web. The membrane loc-
king stems from the kinematic inadequacy in present
GBT formulation which adopts a linear v, function and a

cubic w, function, so that the two transverse membrane
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stretching related terms v, = and W;Y have different de-
grees of polynomial variation. This induces the over-stiff
element equivalent internal forces. In general, to re-
move the membrane locking requires using a higher-or-
der interpolation of v,. Nevertheless, the overall impul-
sive behavior of the lipped-C beam can be captured by
the proposed GBT formulation. A remarkable resem-
blance on beam deformed configurations between the
two kinds of predictions can be observed ( see Fig. 12).
Concerning the distribution of Mises stress, an overall
similarity between the two results are clearly visible.
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Fig.11 Displacement responses predicted by SFEA and pres-
ent GBT analysis

3.3 Example I

Fig. 13 shows a steel square plate with a thickness of 2
mm subjected to a distributed triangle impulse on its top
surface, where its two adjacent edges are fixed, and the
other two edges are free and stiffened by a 5 mm thick
flange, respectively. Except for the two values of 200
GPa and 280 MPa are assigned to the Young’s modulus
and uniaxial yield stress herein, the other material con-
stants adopted are the same as those used in the previous
two examples. The GBT cross-section discretization
adopted involves 100 uniform sub-walls in the web and
six uniform sub-walls in the flange ( seen as a T-shaped
cross-section) , which leads to 318 GBT modes. Re-
garding the longitudinal discretization ( seen as a cantile-
ver T-section beam with a length-distributed constraint) ,
thirty non-uniform elements are used, specifically, four
uniform elements for the beam segment nearby the fixed
end (x <40 mm), four uniform elements for 40 < x <
100 mm, four uniform elements for 100 <x < 180 mm
and eighteen uniform elements for the left portion (x >
180 mm ), leading to a total of 31 482 DOFs, only
23.4% of the number required by the corresponding fi-
nite element model built upon 11 000 roughly uniform
shell-163 elements (134 532 DOFs).

Fig. 14 plots the most relevant cross-section deforma-
tion modes which contribute to the member response, and
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(d)
Deformed configurations and 3D distributions of the
mid-surface Von-Mises stress of the lipped-C beam predicted by
SFEA and proposed GBT. (a) SFEA result when ¢ =1.62 ms; (b)
GBT result when 7 =1.62 ms; (c) SFEA result when 7 =2.52 ms; (d)
GBT result when ¢t =2.52 ms

Fig. 12

the modal analysis concerning the evolutions along the
loading is depicted in Fig. 15. Initially, the local deform-
ation (i.e. , the deflection of web) prevails, so that the
modal participation diagram is almost comprised of the lo-
cal plate modes 2-22 before 0. 34 ms (see Fig. 15). As
the loading progresses, it is expected that the high freq-
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100 mm

0 Sms t

(b)
Fig. 13  Stiffened square plate subjected to an impulsive load.
(a) Geometric dimensions; (b) Pressure vs. time curve

uency related deformations show a trend of attenuation.
We find that the participation of high-order local plate
modes starts to decrease at a much earlier moment. The
distortional mode 1 reflects the y-direction ( in-plane )
flexure of the flange, and its participation exhibits a con-
stant increase all along. Concerning the warping shear
modes, mode 108 characterizes the constant membrane
shear deformation in the flange, whose participation
grows along with the rising participation of mode 1. The
web warping shear mode 110 shows dominant participa-
tion among all the shear modes, which implies that a ref-
erence point in the web closer to the two longitudinal ed-
ges possesses a larger membrane shear strain. Due to the
fact that the web is a two-way slab, the transverse exten-
sion modes play significant roles as well. The web trans-
verse uniform extension ( mode 213 ) prevails, whose
participation increases along with the progress of trans-
verse bending of the web due to the Von Kdrman nonlin-
earity.
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Fig.14 Most relevant cross-section deformation modes which participate in the member response
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Fig.15 GBT modal participation diagram regarding the impact

response of the stiffened plate

Fig. 16 concerns the comparison of displacements at the
cantilever tip between the proposed GBT and the shell fi-
nite element predictions. It is clear that the GBT results
agree well with the SFEA results before 4 ms, and from
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Fig.16 Comparison of the flange-web-node displacements at
the cantilever tip between the proposed GBT model and the
shell-element-based model

then the discrepancies start to increase, especially for §,.
The over-stiff GBT result, as mentioned before, is main-
ly due to the membrane locking in the web. In addition,
the kinematic inadequacy stemming from the linear inter-
polation of v, makes the GBT lack accounting for the
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Poisson’s effect in each wall segment, which can also
produce over-stiff solutions.

Fig. 17 plots the three-dimensional diagrams of mid-
surface Mises stress and the deformed beam configura-
tions predicted by GBT analysis and SFEA. They are in
good agreement despite the existence of small differ-
ences. From the present GBT predictions we can observe
that an overestimation of the mid-surface Mises stress oc-
curs in the vicinity of the flange-web edge where the web
sustains severe
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Fig.17  Deformed configurations and 3D distributions of the
mid-surface Von-Mises stress of the stiffened plate predicted re-
spectively by SFEA and proposed GBT. (a) SFEA result when ¢
=3 ms; (b) GBT result when t =3 ms; (c) SFEA result when =5

ms; (d) GBT result when =5 ms

transverse bending, which is due to membrane locking.
Generally, the clamped boundary requires a simultaneous
satisfactory of the null warping displacements and non-
null shear stresses along the x =0 edge, which can lead to
another kinematic inadequacy. Since both the two re-
quirements actually depend on the amplitude function de-
rivatives, where the null warping displacements needs
¢, =0 (see Eq. (16) ), but non-null shear stress needs
¢ #0 (see Eq. (19)), a contradiction appears and
makes dealing with the boundary condition more problem-
atic. To apply the clamped boundary, we let the ampli-
tude function and their derivatives for all the deformation
modes vanish at x =0, which induces an over-estimation
of Mises stress at the fixed edge, as shown in Figs. 17
(b) and (d).

4 Discussion

It has been proved that the developed GBT formulation
is a highly efficient numerical tool for the simulation of
impact behavior of thin-walled steel members. It is as ef-
ficient as the traditional beam finite elements, but leads to
rigorous results, which is the same as that of the shell
finite elements. Abambres et al. ' verified that for an
equivalently accurate analysis, the number of DOFs re-
quired by a GBT model is only about 25% of that re-
quired by the corresponding SFEA. In this paper, we
reach the same conclusion. The maximum GBT-to-SFEA
DOF ratio is only 23.4% in the above case studies.

For the analyses of large and complex steel frames, it
is important to keep the balance between the computation-
al efficiency and accuracy. The multi-scale techniques'™’
may be another alternative, but they still depend on the
shell finite elements. The proposed GBT formulation can
be a breakthrough for the problem. To simulate steel
frames, though the current research needs further exten-
sion, it can be a preliminary exploration. For simulating
steel frames with GBT, the main difficulty lies in the
modeling of different kinds of steel joints. Fortunately,

17
recent advances''”

in modeling different kinds of steel
joints in the framework of GBT might help with this is-
sue.

Although only three test cases were used to verify the
proposed model, it is enough to conclude that it is a com-
putationally efficient and structurally clarifying alternative
to SFEA for the analyses of the impact behavior of thin-
walled members. A more comprehensive verification of
the proposed GBT model can be retrieved from Ref.

[39].
5 Conclusion

1) The kinematic inadequacies stemming from the line-
ar interpolation of v, and the method of applying the
clamped boundary condition make the proposed GBT for-
mulation exhibit some element locking, which leads to
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the differences between the GBT and SFEA results. Nev-
ertheless, proper assessments of the impact behavior of
thin-walled steel members can be achieved from the re-
vised GBT code.

2) The developed GBT formulation is much more com-
putationally efficient than the SFEA. The GBT meshes
involved in three illustrative examples are much coarser
than their SFEA counterparts, and also the number of
DOFs involved in each GBT analysis is far less than that
involved in the corresponding SFEA.

3) For some materially and geometrically nonlinear
problems, it was verified*"*""’ that the GBT with linear
v, functions can find accurate solutions, but we highly
suggest that the current approach for the calculation of
cross-section deformation modes should be improved, be-
cause the adoption of higher-order interpolation of v, may
offer significant advantage on alleviating the element loc-
king.
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— M A TR SRR TR IELIE 23 GBT =&

BLF RAER

(EHGERFRAMEES A TSR, EiE 200240)

BE. AT AT LEZE(GBT) LB EXS A R ARAKEE  ZEATH TFRDEZRN
PG b ol AR I, £ B R B a6 B R R R LSBT AR BB, SRR R A T — A4S
JE ¢ Cowper-Symonds F A48 x AMAEA. I GBT B\ T HAESMEL LB T, B LA T4 BN
P E g KR BAEE 6 v TS B R R sk, B 2R AE ¥ 4 B AR RS & A GBT # &
T AL S ML S 4. B Kirchhoff AR M T WAg X154 3. A Green-Lagrange & % 7k 4= PK2 & A
SR R E A S R E Fe ) ARIREMA ST @ AKRE. AT RIET R A, AR T34
R o AT S K B AT AR A G 2 R Ao A PR U (Ls-Dyna) 5 A7 25 Rt AT 7 2F 0k, 2 R AR a7
AR Fo o A PR TUAE R 6945 A5 it Fo 0 Jy R LR S ROH B AL TR AR A GG it A R 2.3, T A & 2T 5 MW
Wit

KB 7 SR b AR G RARAMAE X AR R IR ; B ARAL AR

HE S-S TUI3



